Search Results

You are looking at 1 - 10 of 29 items for

  • Author or Editor: Alexandre O. Fierro x
  • Refine by Access: All Content x
Clear All Modify Search
Alexandre O. Fierro
and
Jon M. Reisner

Abstract

In this paper, a high-resolution simulation establishing relationships between lightning and eyewall convection during the rapid intensification phase of Rita will be highlighted. The simulation is an attempt to relate simulated lightning activity within strong convective events (CEs) found within the eyewall and general storm properties for a case from which high-fidelity lightning observations are available. Specifically, the analysis focuses on two electrically active eyewall CEs that had properties similar to events observed by the Los Alamos Sferic Array. The numerically simulated CEs were characterized by updraft speeds exceeding 10 m s−1, a relatively more frequent flash rate confined in a layer between 10 and 14 km, and a propagation speed that was about 10 m s−1 less than of the local azimuthal flow in the eyewall. Within an hour of the first CE, the simulated minimum surface pressure dropped by approximately 5 mb. Concurrent with the pulse of vertical motions was a large uptake in lightning activity. This modeled relationship between enhanced vertical motions, a noticeable pressure drop, and heightened lightning activity suggests the utility of using lightning to remotely diagnose future changes in intensity of some tropical cyclones. Furthermore, given that the model can relate lightning activity to latent heat release, this functional relationship, once validated against a derived field produced by dual-Doppler radar data, could be used in the future to initialize eyewall convection via the introduction of latent heat and/or water vapor into a hurricane model.

Full access
Alexandre O. Fierro
and
Edward R. Mansell

Abstract

This study investigates relationships between storm-scale properties and the electrification and lightning of two simulations of an intensifying idealized tropical cyclone (TC) using the cloud-resolving Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). To produce an intensifying storm, an initial weak TC is subjected to a linear increase in sea surface temperature.

As the TC intensifies, lightning flash rates increase in both the inner core (r ≤ 100 km) and outer region (100 < r ≤ 300 km). As time progresses, lightning in the outer region gradually decreases, while the inner-core lightning remains relatively steady. Bootstrapped correlation statistics using 1000 random samples between the pressure trace and time series of lightning rates shows a statistically significant negative correlation between inner-core lightning and TC intensification. Lightning rates in the outer bands were found to lag minimum surface pressure by 12 h.

The increases in lightning in both the inner core and outer region coincided well with increases in 0.5 g kg−1 graupel and 5 m s−1 updraft volumes in each respective region. Correlation statistics with selected kinematic and microphysical variables known to be associated with lightning in thunderstorms, such as the ice water path, integrated updraft volume, and graupel volume, revealed that their increase in the inner core indicated an ongoing deepening, similar to the lightning. Trends in these proxy variables in the outer bands were also found to lag TC intensification by 12 h.

Overall, the best linear relationships with lightning in either the inner core or the outer region were obtained with the 0.5 g kg−1 graupel volume and total graupel mass.

Full access
Alexandre O. Fierro
and
Lance M. Leslie

Abstract

Over the past century, and especially after the 1970s, rainfall observations show an increase (decrease) of the wet summer (winter) season rainfall over northwest (southwest) Western Australia. The rainfall in central west Western Australia (CWWA), however, has exhibited comparatively much weaker coastal trends, but a more prominent inland increase during the wet summer season. Analysis of seasonally averaged rainfall data from a group of stations, representative of both the coastal and inland regions of CWWA, revealed that rainfall trends during the 1958–2010 period in the wet months of November–April were primarily associated with El Niño–Southern Oscillation (ENSO), and with the southern annular mode (SAM) farther inland. During the wet months of May–October, the Indian Ocean dipole (IOD) showed the most robust relationships. Those results hold when the effects of ENSO or IOD are excluded, and were confirmed using a principal component analysis of sea surface temperature (SST) anomalies, rainfall wavelet analyses, and point-by-point correlations of rainfall with global SST anomaly fields. Although speculative, given their long-term averages, reanalysis data suggest that from 1958 to 2010 the increase in CWWA inland rainfall largely is attributable to an increasing cyclonic anomaly trend over CWWA, bringing onshore moist tropical flow to the Pilbara coast. During May–October, the flow anomaly exhibits a transition from an onshore to offshore flow regime in the 2001–10 decade, which is consistent with the observed weaker drying trend during this period.

Full access
Alexandre O. Fierro
and
Lance M. Leslie

Abstract

Over the past century, particularly after the 1960s, observations of mean maximum temperatures reveal an increasing trend over the southeastern quadrant of the Australian continent. Correlation analysis of seasonally averaged mean maximum temperature anomaly data for the period 1958–2012 is carried out for a representative group of 10 stations in southeast Australia (SEAUS). For the warm season (November–April) there is a positive relationship with the El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) and an inverse relationship with the Antarctic Oscillation (AAO) for most stations. For the cool season (May–October), most stations exhibit similar relationships with the AAO, positive correlations with the dipole mode index (DMI), and marginal inverse relationships with the Southern Oscillation index (SOI) and the PDO. However, for both seasons, the blocking index (BI, as defined by M. Pook and T. Gibson) in the Tasman Sea (160°E) clearly is the dominant climate mode affecting maximum temperature variability in SEAUS with negative correlations in the range from r = −0.30 to −0.65. These strong negative correlations arise from the usual definition of BI, which is positive when blocking high pressure systems occur over the Tasman Sea (near 45°S, 160°E), favoring the advection of modified cooler, higher-latitude maritime air over SEAUS.

A point-by-point correlation with global sea surface temperatures (SSTs), principal component analysis, and wavelet power spectra support the relationships with ENSO and DMI. Notably, the analysis reveals that the maximum temperature variability of one group of stations is explained primarily by local factors (warmer near-coastal SSTs), rather than teleconnections with large-scale drivers.

Full access
Alexandre O. Fierro
and
Edward R. Mansell

Abstract

Relationships between intensity fluctuations, cloud microphysics, lightning variations, and electrical structures within idealized tropical cyclones are investigated with the cloud-resolving Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). An initial strong tropical cyclone is subjected to either steady-state control conditions (CTRL), increased wind shear (SHEAR), or a reduction in sea surface temperature (SST).

In CTRL, nearly all the lightning (>95%) occurred in the outer region (100 < r ≤ 300 km) and was overall very episodic in the inner core (r ≤ 100 km), consistent with observations. The inner-core updrafts were weaker and experienced greater depletion of cloud water by warm rain processes, which, in contrast to the deeper updrafts in the rainband convection, reduced the mixed-phase cloud depth and confined the bulk of the charging and lightning initiations to lower levels.

Notably, larger flash rates were produced in the asymmetric inner core of the SHEAR case, with the majority of the flashes located in the downshear left quadrant, consistent with prior observational works. In contrast to CTRL, the more vigorous inner-core convection in SHEAR resulted in the formation of a prominent negative charge region and enhanced production of negative ground flashes.

With a nearly identical filling rate as SHEAR, the introduction of cooler sea surface temperature in the SST case caused lightning activity to fade rapidly in both the inner core and rainbands.

Full access
Andrew J. Heymsfield
,
Aaron Bansemer
,
Gerald Heymsfield
, and
Alexandre O. Fierro

Abstract

Anvils produced by vigorous tropical convection contribute significantly to the earth’s radiation balance, and their radiative properties depend largely on the concentrations and sizes of the ice particles that form them. These microphysical properties are determined to an important extent by the fate of supercooled droplets, with diameters from 3 to about 20 microns, lofted in the updrafts. The present study addresses the question of whether most or all of these droplets are captured by ice particles or if they remain uncollected until arriving at the −38°C level where they freeze by homogeneous nucleation, producing high concentrations of very small ice particles that can persist and dominate the albedo.

Aircraft data of ice particle and water droplet size distributions from seven field campaigns at latitudes from 25°N to 11°S are combined with a numerical model in order to examine the conditions under which significant numbers of supercooled water droplets can be lofted to the homogeneous nucleation level. Microphysical data were collected in pristine to heavily dust-laden maritime environments, isolated convective updrafts, and tropical cyclone updrafts with peak velocities reaching 25 m s−1. The cumulative horizontal distance of in-cloud sampling at temperatures of −20°C and below exceeds 50 000 km. Analysis reveals that most of the condensate in these convective updrafts is removed before reaching the −20°C level, and the total condensate continues to diminish linearly upward. The amount of condensate in small (<50 μm in diameter) droplets and ice particles, however, increases upward, suggesting new droplet activation with an appreciable radiative impact. Conditions promoting the generation of large numbers of small ice particles through homogeneous ice nucleation include high concentrations of cloud condensation nuclei (sometimes from dust), removal of most of the water substance between cloud base and the −38°C levels, and acceleration of the updrafts at mid- and upper levels such that velocities exceed 5–7 m s−1.

Full access
Alexandre O. Fierro
,
Stephanie N. Stevenson
, and
Robert M. Rabin

Abstract

Total lightning data obtained from the Geostationary Lightning Mapper (GLM) were analyzed to present a first glimpse of relationships with intensity variations and convective evolution in Hurricane Maria (2017). The GLM has made it possible, for the first time, to analyze total lightning within a major hurricane for a long period, far from ground-based detection networks. It is hoped that these observations could enlighten some of the complex relationships existing between intensity fluctuations and the distribution of electrified convection in these systems.

Prior to rapidly intensifying from a category 1 to category 5 storm, Maria produced few inner-core flashes. Increases in total lightning in the inner core (r ≤ 100 km) occurred during both the beginning and end of an intensification cycle, while lightning increases in the outer region (100 < r ≤ 500 km) occurred earlier in the intensification cycle and during weakening. Throughout the analysis period, the largest lightning rates in the outer region were consistently located in the southeastern quadrant, a pattern consistent with modeling studies of electrification within hurricanes. Lightning in the inner core was generally tightly clustered within a 50-km radius from the center and most often found in the southeastern portion of the eyewall, which is atypical. Bootstrapped correlation statistics revealed that the most robust and systematic relationship with storm intensity was obtained for inner-core lightning and maximum surface wind speed. A brief comparison between flash rates from GLM and a very low-frequency ground-based network revealed that not all lightning peaks are seen equally, with hourly flash-rate ratios between both systems sometimes exceeding two orders of magnitude.

Full access
Alexandre O. Fierro
,
Yunheng Wang
,
Jidong Gao
, and
Edward R. Mansell

Abstract

The assimilation of water vapor mass mixing ratio derived from total lightning data from the Geostationary Lightning Mapper (GLM) within a three-dimensional variational (3DVAR) system is evaluated for the analysis and short-term forecast (≤6 h) of a high-impact convective event over the northern Great Plains in the United States. Building on recent work, the lightning data assimilation (LDA) method adjusts water vapor mass mixing ratio within a fixed layer depth above the lifted condensation level by assuming nearly water-saturated conditions at observed lightning locations. In this algorithm, the total water vapor mass added by the LDA is balanced by an equal removal outside observed lightning locations. Additional refinements were also devised to partially alleviate the seasonal and geographical dependence of the original scheme. To gauge the added value of lightning, radar data (radial velocity and reflectivity) were also assimilated with or without lightning. Although the method was evaluated in quasi–real time for several high-impact weather events throughout 2018, this work will focus on one specific, illustrative severe weather case wherein the control simulation—which did not assimilate any data—was eventually able to initiate and forecast the majority of the observed storms. Given a relatively reasonable forecast in the control experiment, the GLM and radar assimilation experiments were still able to improve the short-term forecast of accumulated rainfall and composite radar reflectivity further, as measured by neighborhood-based metrics. These results held whether the simulations made use of one single 3DVAR analysis or high-frequency (10 min) successive cycling over a 1-h period.

Free access
Alexandre O. Fierro
,
Robert F. Rogers
,
Frank D. Marks
, and
David S. Nolan

Abstract

Using the Advanced Weather Research and Forecasting numerical model, the impact of horizontal grid spacing on the microphysical and kinematic structure of a numerically simulated tropical cyclone (TC), and their relationship to storm intensity was investigated with a set of five numerical simulations using input data for the case of Hurricane Rita (2005). The horizontal grid spacing of the parent domain was systematically changed such that the horizontal grid spacing of the inner nest varied from 1 to 5 km by an increment of 1 km, this while keeping geographical dimensions of the domains identical.

Within this small range of horizontal grid spacing, the morphology of the simulated storms and the evolution of the kinematic and microphysics field showed noteworthy differences. As grid spacing increased, the model produced a wider, more tilted eyewall, a larger radius of maximum winds, and higher-amplitude, low wavenumber eyewall asymmetries. The coarser-resolution simulations also produced larger volume, areal coverage, and mass flux of updraft speeds ≥5 m s−1; larger volumes of condensate and ice-phase particles aloft; larger boundary layer kinetic energy; and a stronger secondary circulation. While the contribution of updrafts ≥5 m s−1 to the total updraft mass flux varied little between the five cases, the contribution of downdrafts ≤−2 m s−1 to the total downdraft mass flux was by far the largest in the finest-resolution simulation.

Despite these structural differences, all of the simulations produced storms of similar intensity, as measured by peak 10-m wind speed and minimum surface pressure, suggesting that features in the higher-resolution simulations that tend to weaken TCs (i.e., smaller area of high surface fluxes and weaker total updraft mass flux) compensate for features that favor TC intensity (i.e., smaller-amplitude eyewall asymmetries and larger radial gradients). This raises the possibility that resolution increases in this range may not be as important as other model features (e.g., physical parameterization and initial condition improvements) for improving TC intensity forecasts.

Full access
Alexandre O. Fierro
,
Matthew S. Gilmore
,
Edward R. Mansell
,
Louis J. Wicker
, and
Jerry M. Straka

Abstract

A nonhydrostatic cloud model with electrification and lightning processes was utilized to investigate how simulated supercell thunderstorms respond when they move into environments favorable for storm intensification. One model simulation was initialized with an idealized horizontally varying environment, characteristic of that observed across an outflow boundary in the west Texas Panhandle on 2 June 1995 with larger convective available potential energy (CAPE) and wind shear on the boundary’s cool side. That simulation was compared with a control simulation initialized without the boundary. The simulated right-moving supercell rapidly increased in updraft strength and volume, low-level rotation, radar reflectivity, and 40-dBZ echo-top height as it crossed the boundary, whereas the supercell that did not cross the boundary failed to intensify. For the same kinematic and microphysical evolution and the same inductive charging parameterization, four noninductive (NI) charging parameterizations were tested. In all four cases, there was a general tendency for the charge regions to be lofted higher within the updraft after crossing the boundary. Once the precipitation regions between the main storm and a secondary storm started merging farther on the cool side of the boundary, a gradual deepening and strengthening of the lowest charge regions occurred with relatively large increases in hail and graupel volume, charging rates, charge volume, charge density, and intracloud and cloud-to-ground (CG) flash rates. The negative charge present on graupel within the downdraft appeared to have a common origin via strong NI charging within the midlevel updraft in all four NI cases. Positive channels were more consistent in coming closer to the ground with time compared to negative channels within this graupel and hail-filled downdraft (four of four cases). Those NI schemes that also set up a positive dipole (three of four cases) or inverted tripole (two of four cases) above the downdraft had downward-propagating positive channels that reached ground as positive CG (+CG) flashes. The best overall performance relative to the 2 June 1995 CG lightning observations occurred within one of the rime-accretion-rate-based schemes and the Gardiner scheme as parameterized by Ziegler.

Full access