Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Alexandru Rap x
  • All content x
Clear All Modify Search
Alexandru Rap, Satyajit Ghosh, and Michael H. Smith


This paper presents a novel method based on the application of interpolation techniques to the multicomponent aerosol–cloud parameterization for global climate modeling. Quantifying the aerosol indirect effect still remains a difficult task, and thus developing parameterizations for general circulation models (GCMs) of the microphysics of clouds and their interactions with aerosols is a major challenge for climate modelers. Three aerosol species are considered in this paper—namely sulfate, sea salt, and biomass smoke—and a detailed microphysical chemical parcel model is used to obtain a dataset of points relating the cloud droplet number concentration (CDNC) to the three aerosol input masses. The resulting variation of CDNC with the aerosol mass has some nonlinear features that require a complex but efficient parameterization to be easily incorporated into GCMs. In bicomponent systems, simple interpolation techniques may be sufficient to relate the CDNC to the aerosol mass, but with increasing components, simple methods fail. The parameterization technique proposed in this study employs either the modified Shepard interpolation method or the Hardy multiquadrics interpolation method, and the numerical results obtained show that both methods provide realistic results for a wide range of aerosol mass loadings. This is the first application of these two interpolation techniques to aerosol–cloud interaction studies.

Full access
Amanda C. Maycock, Christopher J. Smith, Alexandru Rap, and Owain Rutherford


The SOCRATES offline radiative transfer code is used to investigate the magnitude and structure of the instantaneous radiative forcing kernels (IRFKs) for five major greenhouse gases (GHGs; CO2, CH4, N2O, CFC-11, and O3). All gases produce IRFKs that peak in the tropical upper troposphere. In addition to differences in spectroscopic intensities and the position of absorption features relative to the peak of the Planck function for Earth’s temperature, the variation in current background concentration of gases substantially affects the IRFK magnitudes. When the background concentration of CO2 is reduced from parts per million to parts per trillion levels, the peak magnitude of the IRFK increases by a factor of 642. When all gases are set to parts per trillion concentrations in the troposphere, the peak IRFK magnitudes are 1.0, 3.0, 3.1, 58 and 75 Wm−2 ppmv−1 100 hPa−1 for CH4, CO2, N2O, O3 and CFC-11, respectively. The altitude of the IRFK maximum also differs, with the maximum for CFC-11 and water vapour occurring above 100 hPa while the other gases peak near 150-200 hPa. Overlap with water vapour absorption decreases the magnitude of the IRFKs for all the GHGs, particularly in the low-to-mid troposphere, but it does not strongly affect the peak IRFK altitude. Cloud radiative effects reduce the magnitude of the IRFK for CO2 by around 10-20% in the upper troposphere. The use of IRFKs to estimate IRF is found to be accurate for small amplitude perturbations, but becomes inaccurate for large amplitude changes (e.g. a doubling) for gases with a higher atmospheric optical depth.

Restricted access
Leighton A. Regayre, Kirsty J. Pringle, Lindsay A. Lee, Alexandru Rap, Jo Browse, Graham W. Mann, Carly L. Reddington, Ken S. Carslaw, Ben B. B. Booth, and Matthew T. Woodhouse


Regional patterns of aerosol radiative forcing are important for understanding climate change on decadal time scales. Uncertainty in aerosol forcing is likely to vary regionally and seasonally because of the short aerosol lifetime and heterogeneous emissions. Here the sensitivity of regional aerosol cloud albedo effect (CAE) forcing to 31 aerosol process parameters and emission fluxes is quantified between 1978 and 2008. The effects of parametric uncertainties on calculations of the balance of incoming and outgoing radiation are found to be spatially and temporally dependent. Regional uncertainty contributions of opposite sign cancel in global-mean forcing calculations, masking the regional importance of some parameters. Parameters that contribute little to uncertainty in Earth’s global energy balance during recent decades make significant contributions to regional forcing variance. Aerosol forcing sensitivities are quantified within 11 climatically important regions, where surface temperatures are thought to influence large-scale climate effects. Substantial simulated uncertainty in CAE forcing in the eastern Pacific leaves open the possibility that apparent shifts in the mean ENSO state may result from a forced aerosol signal on multidecadal time scales. A likely negative aerosol CAE forcing in the tropical North Atlantic calls into question the relationship between Northern Hemisphere aerosol emission reductions and CAE forcing of sea surface temperatures in the main Atlantic hurricane development region on decadal time scales. Simulated CAE forcing uncertainty is large in the North Pacific, suggesting that the role of the CAE in altering Pacific tropical storm frequency and intensity is also highly uncertain.

Open access