Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Alexis Lugo-Fernández x
- Refine by Access: All Content x
Abstract
Dynamical systems theory is employed to study the irregular Loop Current in the Gulf of Mexico using a short database of shedding periods and north–south positions of the current. Two independent tests based on these data suggest that the Loop Current is not chaotic but behaves as a nonlinear driven and dampened oscillator with a very short memory. It is suggested that this current varies around a limit-cycle elliptical attractor. It was found that the amplitude and period of the oscillation vary at time scales of 3–5 yr, a time scale that agrees with those of the North Atlantic Oscillation (NAO) and/or ENSO; however, it is proposed that NAO provides the link between these systems. The proposed mechanism is the ITCZ changes caused by NAO, which affects the wind strength and the transport across the Yucatan Channel. A forecasting scheme that allows for prediction of the next eddy-shedding period from knowledge of the last shedding event, a condition caused by the short memory of the system, is provided.
Abstract
Dynamical systems theory is employed to study the irregular Loop Current in the Gulf of Mexico using a short database of shedding periods and north–south positions of the current. Two independent tests based on these data suggest that the Loop Current is not chaotic but behaves as a nonlinear driven and dampened oscillator with a very short memory. It is suggested that this current varies around a limit-cycle elliptical attractor. It was found that the amplitude and period of the oscillation vary at time scales of 3–5 yr, a time scale that agrees with those of the North Atlantic Oscillation (NAO) and/or ENSO; however, it is proposed that NAO provides the link between these systems. The proposed mechanism is the ITCZ changes caused by NAO, which affects the wind strength and the transport across the Yucatan Channel. A forecasting scheme that allows for prediction of the next eddy-shedding period from knowledge of the last shedding event, a condition caused by the short memory of the system, is provided.
Abstract
A linear correlation exists between the retreat latitude of the Loop Current following eddy separation and the subsequent eddy separation period. This empirical relationship was first identified in satellite altimeter-derived Loop Current metrics. In this paper, a simple vorticity model of the Loop Current is used to provide a semitheoretical basis for this relationship. After suitable scaling approximations, the theory predicts that the LC separation period is a linear function of retreat latitude, which agrees well with altimeter-derived empirical results. Specifically, the predicted slope and y intercept agree to within 9% and 2%, respectively, with the altimetry-derived values.
Abstract
A linear correlation exists between the retreat latitude of the Loop Current following eddy separation and the subsequent eddy separation period. This empirical relationship was first identified in satellite altimeter-derived Loop Current metrics. In this paper, a simple vorticity model of the Loop Current is used to provide a semitheoretical basis for this relationship. After suitable scaling approximations, the theory predicts that the LC separation period is a linear function of retreat latitude, which agrees well with altimeter-derived empirical results. Specifically, the predicted slope and y intercept agree to within 9% and 2%, respectively, with the altimetry-derived values.