Search Results

You are looking at 1 - 10 of 47 items for

  • Author or Editor: Ali Tokay x
  • Refine by Access: All Content x
Clear All Modify Search
Ali Tokay and Kurtuluş Öztürk

Abstract

Small-scale variability of rainfall has been studied employing six dual rain gauge sites at Wallops Island, Virginia. The rain gauge sites were separated between 0.4 and 5 km, matching the beamwidth of Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) precipitation radars. During a 2-yr observational period, over 7100 rainy samples were received at 5-min integration. A single gauge did not report as high as 67% of the time when at least one of the other gauges had rainfall in one of the seasons. Since rainfall from one of the six rain gauges is sufficient for the rainy footprint from a satellite, this demonstrates the common occurrence of the partial beamfilling. For the periods where all gauges were reporting rainfall, a single gauge had at most 13% difference from the areal average rainfall in one of the seasons. This suggests that at the spatial scale of 5 km, the variability caused by the rain gradient is relatively less important than the variability arising from a partially filled footprint. During the passage of frontal systems and tropical cyclones, the beam was filled by rain most of the time and this resulted in relatively higher correlation distances. The correlation distance had a sharp drop off from 45 km in moderately variable rainfall to 3 km in highly variable rainfall and ranged from 5 to 35 km between the different seasons. This demonstrates its highly variable nature. Considering temporal sampling, the monthly rainfall error was 35% and 73% for 3-hourly and twice-daily observations, respectively.

Full access
Ali Tokay and Kenneth V. Beard

Abstract

The size spectra of oscillating raindrops were determined from photographic measurements in Illinois showers at night. The oscillations were detected from modulations in the fall streaks produced by backscattered light near the primary rainbow. Drop sizes were determined from the fall speed using strobe lights. A continuous record of raindrop size distributions was obtained from a disdrometer located beneath the camera sample volume. Results show that oscillations begin near 1-mm diameter, at the onset size for vortex shedding. This finding is consistent with the authors' recent laboratory and field studies for small raindrops. The size spectra show that all raindrops above 1 mm are oscillating, out to the largest size measured of 4.2-mm diameter.

Extrinsic sources of drop oscillations were evaluated using a collision model with viscous decay and using the pressure forcing from turbulence and wind shear in the surface layer. Based on the disdrometer size distributions, the number of oscillating drops produced by collisions was negligible at all rainfall rates compared to the observed number of oscillating drops. Forcing by turbulence and wind shear at the observed wind speeds was found to be well below the threshold of detection. The most plausible explanation for the observed oscillations must involve intrinsic mechanisms capable of maintaining oscillations against viscous decay. Likely sources are the positive feedback to particular oscillation modes caused by vortex shedding and caused by the aerodynamic pressure and drag fluctuations associated with the oscillations themselves.

Full access
Ali Tokay and Paul G. Bashor

Abstract

An experimental study of small-scale variability of raindrop size distributions (DSDs) has been carried out at Wallops Island, Virginia. Three Joss–Waldvogel disdrometers were operated at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line. The main purpose of the study was to examine the variability of DSDs and its integral parameters of liquid water content, rainfall, and reflectivity within a 2-km array: a typical size of Cartesian radar pixel. The composite DSD of rain events showed very good agreement among the disdrometers except where there were noticeable differences in midsize and large drops in a few events. For consideration of partial beam filling where the radar pixel was not completely covered by rain, a single disdrometer reported just over 10% more rainy minutes than the rainy minutes when all three disdrometers reported rainfall. Similarly two out of three disdrometers reported 5% more rainy minutes than when all three were reporting rainfall. These percentages were based on a 1-min average, and were less for longer averaging periods. Considering only the minutes when all three disdrometers were reporting rainfall, just over one quarter of the observations showed an increase in the difference in rainfall with distance. This finding was based on a 15-min average and was even less for shorter averaging periods. The probability and cumulative distributions of a gamma-fitted DSD and integral rain parameters between the three disdrometers had a very good agreement and no major variability. This was mainly due to the high percentage of light stratiform rain and to the number of storms that traveled along the track of the disdrometers. At a fixed time step, however, both DSDs and integral rain parameters showed substantial variability. The standard deviation (SD) of rain rate was near 3 mm h−1, while the SD of reflectivity exceeded 3 dBZ at the longest separation distance. These standard deviations were at 6-min average and were higher at shorter averaging periods. The correlations decreased with increasing separation distance. For rain rate, the correlations were higher than previous gauge-based studies. This was attributed to the differences in data processing and the difference in rainfall characteristics in different climate regions. It was also considered that the gauge sampling errors could be a factor. In this regard, gauge measurements were simulated employing existing disdrometer dataset. While a difference was noticed in cumulative distribution of rain occurrence between the simulated gauge and disdrometer observations, the correlations in simulated gauge measurements did not differ from the disdrometer measurements.

Full access
S. Joseph Munchak and Ali Tokay

Abstract

Observations of raindrop size distributions (DSDs) have validated the use of three-parameter distribution functions in representing the observed spectra. However, dual-frequency radar measurements are limited to retrieving two independent parameters of the DSD, thus requiring a constraint on a three-parameter distribution. In this study, disdrometer observations from a variety of climate regions are employed to develop constraints on the gamma distribution that are optimized for dual-frequency radar rainfall retrievals. These observations are composited by reflectivity, and then gamma parameters are fit to the composites. The results show considerable variability in shape parameter between regions and within a region at different reflectivities. Most notable is that oceanic regions exhibit maxima in shape parameter at 13.6-GHz reflectivities between 40 and 50 dBZ, in contrast to continental regions. The shape parameter and slope parameter of all composite DSDs are poorly correlated. Thus, constraints of a constant shape parameter or shape parameter–slope parameter relationship are inadequate to represent the observed variability. However, the shape and slope parameters are highly correlated at a given reflectivity. Constraints of a fixed shape parameter and relationships between a shape parameter m and slope parameter Λ, both of which are given as functions of 13.6-GHz reflectivity, are applied to retrieve rain rate, liquid water content, and mean mass diameter from the composites. The m–Λ relationships perform best at high reflectivity (dBZ 13.6 > 35), whereas the fixed shape parameter generally results in lower error at medium and low reflectivities (dBZ 13.6 < 35). All calculations have been made under the assumption that the reflectivity measurements have been corrected for attenuation.

Full access
Robert M. Rauber and Ali Tokay

Abstract

Aircraft measurements in many cold cloud systems have found a narrow layer of supercooled water to exist at the cloud top, even at temperatures colder than −30°C. We show in this paper that the imbalance between the condensate supply rate and the bulk ice crystal mass growth rate at a wide range of temperatures and updraft speeds is sufficient to produce this liquid layer near cloud top because of the unique property that the ice crystals located there are small. Calculations are also presented to determine the minimum magnitude and maximum depth of a sustained updraft required to produce supercooled water near cloud top from an initially ice saturated cloud containing a population of ice crystals. Potential sources of the updraft circulations required to produce the liquid layer near cloud top are discussed. Finally, we consider the impact of the liquid layer on both cloud microstructure and precipitation processes.

Full access
Ali Tokay and David A. Short

Abstract

An analysis of temporal variations in gamma parameters of raindrop spectra is presented utilizing surface-based observations from the Tropical Ocean Global Atmosphere Couple Ocean-Atmosphere Experiment. An observed dramatic change in the N 0 parameter, found to occur during rainfall events with little change in rainfall rate, is suggestive of a transition from rain of convective origin to rain originating from the stratiform portion of tropical systems. An empirical stratiform-convective classification method based on N 0 and R (rainfall rate) is presented. Properties of the drop size spectra from the stratiform classification are consistent with micro-physical processes occurring within an aggregation/melting layer aloft, which produces more large raindrops and fewer small to medium size raindrops than rain from the convective classification, at the same rainfall rate. The occurrence of precipitation was found to be 74% (stratiform) and 26% (convective), but total rainfall, on the other hand, was 32% and 68%, respectively. Case studies of the tropical systems studied here indicate that heavy convective showers are generally followed by longer intervals of lighter rain from the stratiform portion of the cloud systems. Differences in the shapes of the frequency distributions of the integral rainfall parameters (i.e., liquid water content, rainfall rate, and radar reflectivity) suggest that the lognormal distribution applies to some, but not all cases. The analysis shows that almost all the precipitation with a radar reflectivity above 40 dBZ falls within the convective classification. Regarding radar reflectivity versus rainfall rate relationships, the exponent is lower and the intercept is higher in the tropical stratiform classification than in the tropical convective classification. Collision and evaporation rates, which are important for cloud-modeling studies, indicate substantial variation at different rainfall rates and between the two types.

Full access
Ali Tokay, Anton Kruger, and Witold F. Krajewski

Abstract

Simultaneous observations made with optical- and impact-type disdrometers were analyzed to broaden knowledge of these instruments. These observations were designed to test how accurately they measure drop size distributions (DSDs). The instruments' use in determining radar rainfall relations such as that between reflectivity and rainfall rate also was analyzed. A unique set of instruments, including two video and one Joss–Waldvogel disdrometer along with eight tipping-bucket rain gauges, was operated within a small area of about 100 × 50 m2 during a 2-month-long field campaign in central Florida. The disdrometers were evaluated by comparing their rain totals with the rain gauges. Both disdrometers underestimated the rain totals, but the video disdrometers had higher readings, resulting in a better agreement with the gauges. The disdrometers underreported small- to medium-size drops, which most likely caused the underestimation of rain totals. However, more medium-size drops were measured by the video disdrometer, thus producing higher rain rates for that instrument. The comparison of DSDs, averaged at different timescales, showed good agreement between the two types of disdrometers. A continuous increase in the number of drops toward smaller sizes was only evident in the video disdrometers at rain rates above 20 mm h−1. Otherwise, the concentration of small drops remained the same or decreased to the smallest measurable size. The Joss–Waldvogel disdrometer severely underestimated only at very small drop size (diameter ≤ 0.5 mm). Beyond the Joss–Waldvogel disdrometer measurement limit were very large drops that fell during heavy and extreme rain intensities. The derived parameters of exponential and gamma distributions reflect the good agreement between the disdrometers' DSD measurements. The parameters of fitted distributions were close to each other, especially when all the coincident measurements were averaged. The low concentrations of very large drops observed by the video disdrometers did not have a significant impact on reflectivity measurements in terms of the relationships between reflectivity and other integral parameters (rain rate, liquid water content, and attenuation). There was almost no instrument dependency. Rather, the relations depend on the method of regression and the choice of independent variable. Also, relationships derived for S-band radars and Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) differ from each other primarily because of the higher reflectivities at the shorter PR wavelength at high rain-rate regime.

Full access
Liang Liao, Robert Meneghini, and Ali Tokay

Abstract

A framework based on measured raindrop size distribution (DSD) data has been developed to assess uncertainties in DSD models employed in Ku- and Ka-band dual-wavelength radar retrievals. In this study, the rain rates and attenuation coefficients from DSD parameters derived by dual-wavelength algorithms are compared with those directly obtained from measured DSD spectra. The impact of the DSD gamma parameterizations on rain estimation from the Global Precipitation Measurement mission (GPM) Dual-Frequency Precipitation Radar (DPR) is examined for the cases of a fixed shape factor μ as well as for a constrained μ—that is, a μ–Λ relation (a relationship between the shape parameter and slope parameter Λ of the gamma DSD)—by using 11 Particle Size and Velocity (Parsivel) disdrometer measurements with a total number of about 50 000 one-minute spectra that were collected during the Iowa Flood Studies (IFloodS) experiment. It is found that the DPR-like dual-wavelength techniques provide fairly accurate estimates of rain rate and attenuation if a fixed-μ gamma DSD model is used, with the value of μ ranging from 3 to 6. Comparison of the results reveals that the retrieval errors from the μ–Λ relations are generally small, with biases of less than ±10%, and are comparable to the results from a fixed-μ gamma model with μ equal to 3 and 6. The DSD evaluation procedure is also applied to retrievals in which a lognormal DSD model is used.

Full access
Jackson Tan, Walter A. Petersen, and Ali Tokay

Abstract

The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.

Full access
Elisa Adirosi, Luca Baldini, and Ali Tokay

Abstract

A well-designed deployment of well-maintained surface instruments as well as abundant rainfall provided an excellent dataset with which to evaluate the Micro Rain Radar (MRR) performance for estimating raindrop size distribution (DSD) and its integral rainfall parameters with respect to the consolidated devices during the Iowa Flood Studies (IFloodS) field campaign. The MRR was collocated with two-dimensional video disdrometer (2DVD) and Autonomous Parsivel2 Unit (APU) at three different sites located at 5–70-km distances from the National Aeronautics and Space Administration’s S-band dual-polarization Doppler radar (NPOL). A comparative study between MRR, 2DVD, APU, and NPOL was conducted including all rainy minutes as well as minutes of stratiform rain and convective rain. Considering 2DVD as a primary reference, a good agreement was evident for reflectivity between MRR’s lowest reliable height and 2DVD with an absolute bias of less than 2 dB even in convective rain except for one site. For rainfall rate, the percent absolute bias between MRR and 2DVD ranged between 25% and 35% in stratiform rain and about 10% higher in convective rain. Agreement for mean mass-weighted raindrop diameter was good (bias less than 0.1 mm), whereas MRR overestimated the normalized intercept parameter of the gamma DSD [mean bias among the three sites was −0.13 log(mm−1 m−3)]. The agreement between MRR and APU was slightly worse than the one between MRR and 2DVD. When the horizontal and differential reflectivities of NPOL were compared with the ones derived from the MRR DSD resampled within the radar volume, we found an absolute bias of approximately 3 and 0.4 dB, respectively.

Free access