Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Allison B. Marquardt Collow x
  • All content x
Clear All Modify Search
Allison B. Marquardt Collow and Mark A. Miller

Abstract

Changes in the climate system of the Amazon rain forest of Brazil can impact factors that influence the radiation budget such as clouds, atmospheric moisture, and the surface albedo. This study examines the relationships between clouds and radiation in this region using surface observations from the first year of the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility 1 (AMF1) in Manacapuru, Brazil, and satellite measurements from the Clouds and the Earth’s Radiant Energy System (CERES). The seasonal cycles of the radiation budget and cloud radiative effects (CREs) are evaluated at the top of the atmosphere (TOA), at the surface, and within the atmospheric column using these observations and are placed into a regional context using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Water vapor and clouds are abundant throughout the year, even though slight decreases are observed in the dry season. The column water vapor load is large enough that the longwave radiative flux divergence is nearly constant throughout the year. Clouds produce a significant shortwave CRE at the surface and TOA, exceeding 200 W m−2 during the wet season. Discrepancies, especially in column shortwave radiative absorption, between the observations and MERRA-2 are demonstrated that warrant additional analysis of the microphysical and macrophysical cloud properties in MERRA-2. More trustworthy fields in the MERRA-2 product suggest that the expansive nearby river system impacts the regional radiation budget and thereby renders AMF1 observations potentially biased relative to regions farther removed from rivers within the Amazon rain forest.

Full access
Allison B. Marquardt Collow, Michael G. Bosilovich, and Randal D. Koster

Abstract

Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here a state-of-the-art atmospheric reanalysis is used to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500-hPa heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10% of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cutoff low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the East Coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic-scale baroclinic disturbances.

Full access
Allison B. Marquardt Collow, Richard I. Cullather, and Michael G. Bosilovich

Abstract

Surface air temperatures have recently increased more rapidly in the Arctic than elsewhere in the world, but large uncertainty remains in the time series and trend. Over the data-sparse sea ice zone, the retrospective assimilation of observations in numerical reanalyses has been thought to offer a possible, but challenging, avenue for adequately reproducing the historical time series. Focusing on the central Arctic Ocean, output is analyzed from 12 reanalyses with a specific consideration of two widely used products: the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim, hereafter ERA-I). Among the reanalyses considered, a trend of 0.9 K decade−1 is indicated but with an uncertainty of 6%, and a large spread in mean values. There is a partitioning among those reanalyses that use fractional sea ice cover and those that employ a threshold, which are colder in winter by an average of 2 K but agree more closely with in situ observations. For reanalyses using fractional sea ice cover, discrepancies in the ice fraction in autumn and winter explain most of the differences in air temperature values. A set of experiments using the MERRA-2 background model using MERRA-2 and ERA-I sea ice and sea surface temperature indicates significant effects of boundary condition differences on air temperatures, and a preferential warm bias inherent in the MERRA-2 model sea ice representation. Differences between experiments and reanalyses suggest the available observations apply a significant constraint on reanalysis mean temperatures.

Restricted access
Allison B. Marquardt Collow, Haiden Mersiovsky, and Michael G. Bosilovich

Abstract

Transient, narrow plumes of strong water vapor transport, referred to as atmospheric rivers (ARs), are responsible for much of the precipitation along the West Coast of the United States. The most intense precipitation events are almost always induced by an AR on the coast of Oregon and Washington and can result in detrimental impacts on society due to mudslides and flooding. To accurately predict AR events on numerical weather prediction, subseasonal, and seasonal time scales, it is important to understand the large-scale impacts on extreme AR events. Here, characteristics of ARs that result in an extreme precipitation event are compared to typical ARs on the coast of Washington State. In addition to more intense water vapor transport, notable differences in the synoptic forcing are present during extreme precipitation events that are not present during typical AR events. Subseasonal and seasonal teleconnection patterns are known to influence the weather in the Pacific Northwest and are investigated here. The Madden–Julian oscillation (MJO) plays a role in determining the strength of precipitation associated with an AR on the Washington coast. Phase 5 of the MJO (convection centered over the Maritime Continent) is the most common phase during an extreme precipitation event, while phase 2 (convection over the Indian Ocean) discourages an extreme event from occurring. Interactions between El Niño–Southern Oscillation (ENSO) and the propagation speed of the MJO result in extreme events during phase 1 of the MJO and El Niño but phase 8 during neutral ESNO conditions.

Restricted access
Natalie P. Thomas, Michael G. Bosilovich, Allison B. Marquardt Collow, Randal D. Koster, Siegfried D. Schubert, Amin Dezfuli, and Sarith P. Mahanama

Abstract

Heat waves are extreme climate events that have the potential to cause immense stress on human health, agriculture, and energy systems, so understanding the processes leading to their onset is crucial. There is no single accepted definition for heat waves, but they are generally described as a sustained amount of time over which temperature exceeds a local threshold. Multiple different temperature variables are potentially relevant, because high values of both daily maximum and minimum temperatures can be detrimental to human health. In this study, we focus explicitly on the different mechanisms associated with summertime heat waves manifested during daytime hours versus nighttime hours over the contiguous United States. Heat waves are examined using the National Aeronautics and Space Administration Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Over 1980–2018, the increase in the number of heat-wave days per summer was generally stronger for nighttime heat-wave days than for daytime heat-wave days, with localized regions of significant positive trends. Processes linked with daytime and nighttime heat waves are identified through composite analysis of precipitation, soil moisture, clouds, humidity, and fluxes of heat and moisture. Daytime heat waves are associated with dry conditions, reduced cloud cover, and increased sensible heating. Mechanisms leading to nighttime heat waves differ regionally across the United States, but they are typically associated with increased clouds, humidity, and/or low-level temperature advection. In the midwestern United States, enhanced moisture is transported from the Gulf of Mexico during nighttime heat waves.

Restricted access