Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Allison McComiskey x
  • Refine by Access: All Content x
Clear All Modify Search
Graham Feingold and Allison McComiskey
Full access
Allison McComiskey and Richard A. Ferrare
Full access
James Mather, Susannah Burrows, Duli Chand, Nancy Hess, Alexander Laskin, Allison McComiskey, Noopur Sharma, and John Shilling
Full access
Laura D. Riihimaki, Connor Flynn, Allison McComiskey, Dan Lubin, Yann Blanchard, J. Christine Chiu, Graham Feingold, Daniel R. Feldman, Jake J. Gristey, Christian Herrera, Gary Hodges, Evgueni Kassianov, Samuel E. LeBlanc, Alexander Marshak, Joseph J. Michalsky, Peter Pilewskie, Sebastian Schmidt, Ryan C. Scott, Yolanda Shea, Kurtis Thome, Richard Wagener, and Bruce Wielicki

Abstract

Industry advances have greatly reduced the cost and size of ground-based shortwave (SW) sensors for the ultraviolet, visible, and near-infrared spectral ranges that make up the solar spectrum, while simultaneously increasing their ruggedness, reliability, and calibration accuracy needed for outdoor operation. These sensors and collocated meteorological equipment are an important part of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) User Facility, which has supported parallel integrated measurements of atmospheric and surface properties for more than two decades at fixed and mobile sites around the world. The versatile capability of these ground-based measurements includes 1) rich spectral information required for retrieving cloud and aerosol microphysical properties, such as cloud phase, cloud particle size, and aerosol size distributions, and 2) high temporal resolution needed for capturing fast evolution of cloud microphysical properties in response to rapid changes in meteorological conditions. Here we describe examples of how ARM’s spectral radiation measurements are being used to improve understanding of the complex processes governing microphysical, optical, and radiative properties of clouds and aerosol.

Full access
Gijs de Boer, Mark Ivey, Beat Schmid, Dale Lawrence, Darielle Dexheimer, Fan Mei, John Hubbe, Albert Bendure, Jasper Hardesty, Matthew D. Shupe, Allison McComiskey, Hagen Telg, Carl Schmitt, Sergey Y. Matrosov, Ian Brooks, Jessie Creamean, Amy Solomon, David D. Turner, Christopher Williams, Maximilian Maahn, Brian Argrow, Scott Palo, Charles N. Long, Ru-Shan Gao, and James Mather

Abstract

Thorough understanding of aerosols, clouds, boundary layer structure, and radiation is required to improve the representation of the Arctic atmosphere in weather forecasting and climate models. To develop such understanding, new perspectives are needed to provide details on the vertical structure and spatial variability of key atmospheric properties, along with information over difficult-to-reach surfaces such as newly forming sea ice. Over the last three years, the U.S. Department of Energy (DOE) has supported various flight campaigns using unmanned aircraft systems [UASs, also known as unmanned aerial vehicles (UAVs) and drones] and tethered balloon systems (TBSs) at Oliktok Point, Alaska. These activities have featured in situ measurements of the thermodynamic state, turbulence, radiation, aerosol properties, cloud microphysics, and turbulent fluxes to provide a detailed characterization of the lower atmosphere. Alongside a suite of active and passive ground-based sensors and radiosondes deployed by the DOE Atmospheric Radiation Measurement (ARM) program through the third ARM Mobile Facility (AMF-3), these flight activities demonstrate the ability of such platforms to provide critically needed information. In addition to providing new and unique datasets, lessons learned during initial campaigns have assisted in the development of an exciting new community resource.

Open access
Armin Sorooshian, Bruce Anderson, Susanne E. Bauer, Rachel A. Braun, Brian Cairns, Ewan Crosbie, Hossein Dadashazar, Glenn Diskin, Richard Ferrare, Richard C. Flagan, Johnathan Hair, Chris Hostetler, Haflidi H. Jonsson, Mary M. Kleb, Hongyu Liu, Alexander B. MacDonald, Allison McComiskey, Richard Moore, David Painemal, Lynn M. Russell, John H. Seinfeld, Michael Shook, William L. Smith Jr, Kenneth Thornhill, George Tselioudis, Hailong Wang, Xubin Zeng, Bo Zhang, Luke Ziemba, and Paquita Zuidema

Abstract

We report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-aircraft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.

Open access