Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Ami Arthur x
  • All content x
Clear All Modify Search
Lin Tang, Jian Zhang, Micheal Simpson, Ami Arthur, Heather Grams, Yadong Wang, and Carrie Langston

Abstract

The Multi-Radar-Multi-Sensor (MRMS) system was transitioned into operations at the National Centers for Environmental Prediction in the fall of 2014. It provides high-quality and high-resolution severe weather and precipitation products for meteorology, hydrology, and aviation applications. Among processing modules, the radar data quality control (QC) plays a critical role in effectively identifying and removing various nonhydrometeor radar echoes for accurate quantitative precipitation estimation (QPE). Since its initial implementation in 2014, the radar QC has undergone continuous refinements and enhancements to ensure its robust performance across seasons and all regions in the continental United States and southern Canada. These updates include 1) improved melting-layer delineation, 2) clearance of wind farm contamination, 3) mitigation of corrupt data impacts due to hardware issues, 4) mitigation of sun spikes, and 5) mitigation of residual ground/lake/sea clutter due to sidelobe effects and anomalous propagation. This paper provides an overview of the MRMS radar data QC enhancements since 2014.

Restricted access
Ami T. Arthur, Gina M. Cox, Nathan R. Kuhnert, David L. Slayter, and Kenneth W. Howard

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and Prediction (FFMP) system. FFMP-averaged basin rainfall calculations allow NWS forecasters to monitor precipitation in flash-flood-scale basins, improving their ability to make accurate and timely flash-flood-warning decisions. The NBDP was accomplished through a partnership with the U.S. Geological Survey Earth Resources Observation Systems (EROS) Data Center (EDC). The one-arc-second (approximately 30 m)-resolution digital terrain data in the EDC's National Elevation Dataset provided the basis for derivation of the following digital maps using a geographic information system: 1) a grid of hydrologically conditioned elevation values (all grid cells have a defined flow direction), 2) a grid of flow direction indicating which of eight directions water will travel based on slope, 3) a grid of flow accumulation containing a count of the number of upstream grid cells contributing flow to each grid cell, 4) synthetic streamlines derived from the flow accumulation grid, and 5) flash-flood-scale basin boundaries. Special techniques were applied in coastal areas and closed basins (basins with no outflow) to ensure the accuracy of derived basins and streams. Codifying each basin with a unique identifier and including hydrologic connectivity information produced a versatile, seamless dataset for use in FFMP and other national applications.

Full access
Steven M. Martinaitis, Andrew P. Osborne, Micheal J. Simpson, Jian Zhang, Kenneth W. Howard, Stephen B. Cocks, Ami Arthur, Carrie Langston, and Brian T. Kaney

Abstract

Weather radars and gauge observations are the primary observations to determine the coverage and magnitude of precipitation; however, radar and gauge networks have significant coverage gaps, which can underrepresent or even miss the occurrence of precipitation. This is especially noticeable in mountainous regions and in shallow precipitation regimes. The following study presents a methodology to improve spatial representations of precipitation by seamlessly blending multiple precipitation sources within the Multi-Radar Multi-Sensor (MRMS) system. A high spatiotemporal resolution multisensor merged quantitative precipitation estimation (QPE) product (MSQPE) is generated by using gauge-corrected radar QPE as a primary precipitation source with a combination of hourly gauge observations, monthly precipitation climatologies, numerical weather prediction short-term precipitation forecasts, and satellite observations to use in areas of insufficient radar coverage. The merging of the precipitation sources is dependent upon radar coverage based on an updated MRMS radar quality index, surface and atmospheric conditions, topography, gauge locations, and precipitation values. Evaluations of the MSQPE product over the western United States resulted in improved statistical measures over its individual input precipitation sources, particularly the locally gauge-corrected radar QPE. The MSQPE scheme demonstrated its ability to sufficiently fill in areas where radar alone failed to detect precipitation due to significant beam blockage or poor coverage while minimizing the generation of false precipitation and underestimation biases that resulted from radar overshooting precipitation.

Restricted access
Jian Zhang, Kenneth Howard, Carrie Langston, Steve Vasiloff, Brian Kaney, Ami Arthur, Suzanne Van Cooten, Kevin Kelleher, David Kitzmiller, Feng Ding, Dong-Jun Seo, Ernie Wells, and Chuck Dempsey

The National Mosaic and Multi-sensor QPE (Quantitative Precipitation Estimation), or “NMQ”, system was initially developed from a joint initiative between the National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, the Federal Aviation Administration's Aviation Weather Research Program, and the Salt River Project. Further development has continued with additional support from the National Weather Service (NWS) Office of Hydrologic Development, the NWS Office of Climate, Water, and Weather Services, and the Central Weather Bureau of Taiwan. The objectives of NMQ research and development (R&D) are 1) to develop a hydrometeorological platform for assimilating different observational networks toward creating high spatial and temporal resolution multisensor QPEs for f lood warnings and water resource management and 2) to develop a seamless high-resolution national 3D grid of radar reflectivity for severe weather detection, data assimilation, numerical weather prediction model verification, and aviation product development.

Through about ten years of R&D, a real-time NMQ system has been implemented (http://nmq.ou.edu). Since June 2006, the system has been generating high-resolution 3D reflectivity mosaic grids (31 vertical levels) and a suite of severe weather and QPE products in real-time for the conterminous United States at a 1-km horizontal resolution and 2.5 minute update cycle. The experimental products are provided in real-time to end users ranging from government agencies, universities, research institutes, and the private sector and have been utilized in various meteorological, aviation, and hydrological applications. Further, a number of operational QPE products generated from different sensors (radar, gauge, satellite) and by human experts are ingested in the NMQ system and the experimental products are evaluated against the operational products as well as independent gauge observations in real time.

The NMQ is a fully automated system. It facilitates systematic evaluations and advances of hydrometeorological sciences and technologies in a real-time environment and serves as a test bed for rapid science-to-operation infusions. This paper describes scientific components of the NMQ system and presents initial evaluation results and future development plans of the system.

Full access
Steven M. Martinaitis, Jonathan J. Gourley, Zachary L. Flamig, Elizabeth M. Argyle, Robert A. Clark III, Ami Arthur, Brandon R. Smith, Jessica M. Erlingis, Sarah Perfater, and Benjamin Albright

Abstract

There are numerous challenges with the forecasting and detection of flash floods, one of the deadliest weather phenomena in the United States. Statistical metrics of flash flood warnings over recent years depict a generally stagnant warning performance, while regional flash flood guidance utilized in warning operations was shown to have low skill scores. The Hydrometeorological Testbed—Hydrology (HMT-Hydro) experiment was created to allow operational forecasters to assess emerging products and techniques designed to improve the prediction and warning of flash flooding. Scientific goals of the HMT-Hydro experiment included the evaluation of gridded products from the Multi-Radar Multi-Sensor (MRMS) and Flooded Locations and Simulated Hydrographs (FLASH) product suites, including the experimental Coupled Routing and Excess Storage (CREST) model, the application of user-defined probabilistic forecasts in experimental flash flood watches and warnings, and the utility of the Hazard Services software interface with flash flood recommenders in real-time experimental warning operations. The HMT-Hydro experiment ran in collaboration with the Flash Flood and Intense Rainfall (FFaIR) experiment at the Weather Prediction Center to simulate the real-time workflow between a national center and a local forecast office, as well as to facilitate discussions on the challenges of short-term flash flood forecasting. Results from the HMT-Hydro experiment highlighted the utility of MRMS and FLASH products in identifying the spatial coverage and magnitude of flash flooding, while evaluating the perception and reliability of probabilistic forecasts in flash flood watches and warnings.

NSSL scientists and NWS forecasters evaluate new tools and techniques through real-time test bed operations for the improvement of flash flood detection and warning operations.

Full access
Jian Zhang, Kenneth Howard, Carrie Langston, Brian Kaney, Youcun Qi, Lin Tang, Heather Grams, Yadong Wang, Stephen Cocks, Steven Martinaitis, Ami Arthur, Karen Cooper, Jeff Brogden, and David Kitzmiller

Abstract

Rapid advancements of computer technologies in recent years made the real-time transferring and integration of high-volume, multisource data at a centralized location a possibility. The Multi-Radar Multi-Sensor (MRMS) system recently implemented at the National Centers for Environmental Prediction demonstrates such capabilities by integrating about 180 operational weather radars from the conterminous United States and Canada into a seamless national 3D radar mosaic with very high spatial (1 km) and temporal (2 min) resolution. The radar data can be integrated with high-resolution numerical weather prediction model data, satellite data, and lightning and rain gauge observations to generate a suite of severe weather and quantitative precipitation estimation (QPE) products. This paper provides an overview of the initial operating capabilities of MRMS QPE products.

Full access
Jonathan J. Gourley, Humberto Vergara, Ami Arthur, Robert A. Clark III, Dennis Staley, John Fulton, Laura Hempel, David C. Goodrich, Katherine Rowden, and Peter R. Robichaud
Full access
Jonathan J. Gourley, Zachary L. Flamig, Humberto Vergara, Pierre-Emmanuel Kirstetter, Robert A. Clark III, Elizabeth Argyle, Ami Arthur, Steven Martinaitis, Galateia Terti, Jessica M. Erlingis, Yang Hong, and Kenneth W. Howard

Abstract

This study introduces the Flooded Locations and Simulated Hydrographs (FLASH) project. FLASH is the first system to generate a suite of hydrometeorological products at flash flood scale in real-time across the conterminous United States, including rainfall average recurrence intervals, ratios of rainfall to flash flood guidance, and distributed hydrologic model–based discharge forecasts. The key aspects of the system are 1) precipitation forcing from the National Severe Storms Laboratory (NSSL)’s Multi-Radar Multi-Sensor (MRMS) system, 2) a computationally efficient distributed hydrologic modeling framework with sufficient representation of physical processes for flood prediction, 3) capability to provide forecasts at all grid points covered by radars without the requirement of model calibration, and 4) an open-access development platform, product display, and verification system for testing new ideas in a real-time demonstration environment and for fostering collaborations.

This study assesses the FLASH system’s ability to accurately simulate unit peak discharges over a 7-yr period in 1,643 unregulated gauged basins. The evaluation indicates that FLASH’s unit peak discharges had a linear and rank correlation of 0.64 and 0.79, respectively, and that the timing of the peak discharges has errors less than 2 h. The critical success index with FLASH was 0.38 for flood events that exceeded action stage. FLASH performance is demonstrated and evaluated for case studies, including the 2013 deadly flash flood case in Oklahoma City, Oklahoma, and the 2015 event in Houston, Texas—both of which occurred on Memorial Day weekends.

Full access
Jonathan J. Gourley, Yang Hong, Zachary L. Flamig, Ami Arthur, Robert Clark, Martin Calianno, Isabelle Ruin, Terry Ortel, Michael E. Wieczorek, Pierre-Emmanuel Kirstetter, Edward Clark, and Witold F. Krajewski

Despite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets.

Full access
Suzanne Van Cooten, Kevin E. Kelleher, Kenneth Howard, Jian Zhang, Jonathan J. Gourley, John S. Kain, Kodi Nemunaitis-Monroe, Zac Flamig, Heather Moser, Ami Arthur, Carrie Langston, Randall Kolar, Yang Hong, Kendra Dresback, Evan Tromble, Humberto Vergara, Richard A Luettich Jr., Brian Blanton, Howard Lander, Ken Galluppi, Jessica Proud Losego, Cheryl Ann Blain, Jack Thigpen, Katie Mosher, Darin Figurskey, Michael Moneypenny, Jonathan Blaes, Jeff Orrock, Rich Bandy, Carin Goodall, John G. W. Kelley, Jason Greenlaw, Micah Wengren, Dave Eslinger, Jeff Payne, Geno Olmi, John Feldt, John Schmidt, Todd Hamill, Robert Bacon, Robert Stickney, and Lundie Spence

The objective of the Coastal and Inland Flooding Observation and Warning (CI-FLOW) project is to prototype new hydrometeorologic techniques to address a critical NOAA service gap: routine total water level predictions for tidally influenced watersheds. Since February 2000, the project has focused on developing a coupled modeling system to accurately account for water at all locations in a coastal watershed by exchanging data between atmospheric, hydrologic, and hydrodynamic models. These simulations account for the quantity of water associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface.

Within this project, CI-FLOW addresses the following goals: i) apply advanced weather and oceanographic monitoring and prediction techniques to the coastal environment; ii) prototype an automated hydrometeorologic data collection and prediction system; iii) facilitate interdisciplinary and multiorganizational collaborations; and iv) enhance techniques and technologies that improve actionable hydrologic/hydrodynamic information to reduce the impacts of coastal flooding. Results are presented for Hurricane Isabel (2003), Hurricane Earl (2010), and Tropical Storm Nicole (2010) for the Tar–Pamlico and Neuse River basins of North Carolina. This area was chosen, in part, because of the tremendous damage inflicted by Hurricanes Dennis and Floyd (1999). The vision is to transition CI-FLOW research findings and technologies to other U.S. coastal watersheds.

Full access