Search Results
You are looking at 1 - 10 of 34 items for
- Author or Editor: Amy McGovern x
- Refine by Access: All Content x
Abstract
Thunderstorms in the United States cause over 100 deaths and $10 billion (U.S. dollars) in damage per year, much of which is attributable to straight-line (nontornadic) wind. This paper describes a machine-learning system that forecasts the probability of damaging straight-line wind (≥50 kt or 25.7 m s−1) for each storm cell in the continental United States, at distances up to 10 km outside the storm cell and lead times up to 90 min. Predictors are based on radar scans of the storm cell, storm motion, storm shape, and soundings of the near-storm environment. Verification data come from weather stations and quality-controlled storm reports. The system performs very well on independent testing data. The area under the receiver operating characteristic (ROC) curve ranges from 0.88 to 0.95, the critical success index (CSI) ranges from 0.27 to 0.91, and the Brier skill score (BSS) ranges from 0.19 to 0.65 (>0 is better than climatology). For all three scores, the best value occurs for the smallest distance (inside storm cell) and/or lead time (0–15 min), while the worst value occurs for the greatest distance (5–10 km outside storm cell) and/or lead time (60–90 min). The system was deployed during the 2017 Hazardous Weather Testbed.
Abstract
Thunderstorms in the United States cause over 100 deaths and $10 billion (U.S. dollars) in damage per year, much of which is attributable to straight-line (nontornadic) wind. This paper describes a machine-learning system that forecasts the probability of damaging straight-line wind (≥50 kt or 25.7 m s−1) for each storm cell in the continental United States, at distances up to 10 km outside the storm cell and lead times up to 90 min. Predictors are based on radar scans of the storm cell, storm motion, storm shape, and soundings of the near-storm environment. Verification data come from weather stations and quality-controlled storm reports. The system performs very well on independent testing data. The area under the receiver operating characteristic (ROC) curve ranges from 0.88 to 0.95, the critical success index (CSI) ranges from 0.27 to 0.91, and the Brier skill score (BSS) ranges from 0.19 to 0.65 (>0 is better than climatology). For all three scores, the best value occurs for the smallest distance (inside storm cell) and/or lead time (0–15 min), while the worst value occurs for the greatest distance (5–10 km outside storm cell) and/or lead time (60–90 min). The system was deployed during the 2017 Hazardous Weather Testbed.
Abstract
This paper presents an automated approach for classifying storm type from weather radar reflectivity using decision trees. Recent research indicates a strong relationship between storm type (morphology) and severe weather, and such information can aid in the warning process. Furthermore, new adaptive sensing tools, such as the Center for Collaborative Adaptive Sensing of the Atmosphere’s (CASA’s) weather radar, can make use of storm-type information in real time. Given the volume of weather radar data from those tools, manual classification of storms is not possible when dealing with real-time data streams. An automated system can more quickly and efficiently sort through real-time data streams and return value-added output in a form that can be more easily manipulated and understood. The method of storm classification in this paper combines two machine learning techniques: K-means clustering and decision trees. K-means segments the reflectivity data into clusters, and decision trees classify each cluster. The K means was used to separate isolated cells from linear systems. Each cell received labels such as “isolated pulse,” “isolated strong,” or “multicellular.” Linear systems were labeled as “trailing stratiform,” “leading stratiform,” and “parallel stratiform.” The classification scheme was tested using both simulated and observed storms. The simulated training and test datasets came from the Advanced Regional Prediction System (ARPS) simulated reflectivity data, and observed data were collected from composite reflectivity mosaics from the CASA Integrative Project One (IP1) network. The observations from the CASA network showed that the classification scheme is now ready for operational use.
Abstract
This paper presents an automated approach for classifying storm type from weather radar reflectivity using decision trees. Recent research indicates a strong relationship between storm type (morphology) and severe weather, and such information can aid in the warning process. Furthermore, new adaptive sensing tools, such as the Center for Collaborative Adaptive Sensing of the Atmosphere’s (CASA’s) weather radar, can make use of storm-type information in real time. Given the volume of weather radar data from those tools, manual classification of storms is not possible when dealing with real-time data streams. An automated system can more quickly and efficiently sort through real-time data streams and return value-added output in a form that can be more easily manipulated and understood. The method of storm classification in this paper combines two machine learning techniques: K-means clustering and decision trees. K-means segments the reflectivity data into clusters, and decision trees classify each cluster. The K means was used to separate isolated cells from linear systems. Each cell received labels such as “isolated pulse,” “isolated strong,” or “multicellular.” Linear systems were labeled as “trailing stratiform,” “leading stratiform,” and “parallel stratiform.” The classification scheme was tested using both simulated and observed storms. The simulated training and test datasets came from the Advanced Regional Prediction System (ARPS) simulated reflectivity data, and observed data were collected from composite reflectivity mosaics from the CASA Integrative Project One (IP1) network. The observations from the CASA network showed that the classification scheme is now ready for operational use.
Abstract
We have developed and released an iPad application, Storm Evader, to demonstrate to youth how technology can be used as a tool and to teach youth about weather and its impact on real-world activities, including flying. As technology becomes more widespread in modern society, many young people overlook the usefulness of technology and have instead come to see it primarily as a provider of entertainment. Storm Evader exposes children to meteorology and aviation in an engaging way. The game requires players to route planes across the United States while avoiding dangerous storms and conserving fuel. The artificial intelligence inside the game suggests routes around a storm. To maximize their scores, players should take the computer’s suggestions into account. Players are exposed to actual radar data and are aided by computer-generated forecast models and storm outlooks from the Storm Prediction Center. In the future, we will include a turbulence model. Exposure to the variety of weather forecasts and their use in the game introduces children to new weather concepts. We also report results of surveys of learning from groups of children playing the game.
Abstract
We have developed and released an iPad application, Storm Evader, to demonstrate to youth how technology can be used as a tool and to teach youth about weather and its impact on real-world activities, including flying. As technology becomes more widespread in modern society, many young people overlook the usefulness of technology and have instead come to see it primarily as a provider of entertainment. Storm Evader exposes children to meteorology and aviation in an engaging way. The game requires players to route planes across the United States while avoiding dangerous storms and conserving fuel. The artificial intelligence inside the game suggests routes around a storm. To maximize their scores, players should take the computer’s suggestions into account. Players are exposed to actual radar data and are aided by computer-generated forecast models and storm outlooks from the Storm Prediction Center. In the future, we will include a turbulence model. Exposure to the variety of weather forecasts and their use in the game introduces children to new weather concepts. We also report results of surveys of learning from groups of children playing the game.
Abstract
This paper describes the development and analysis of an objective climatology of warm and cold fronts over North America from 1979 to 2018. Fronts are detected by a convolutional neural network (CNN), trained to emulate fronts drawn by human meteorologists. Predictors for the CNN are surface and 850-hPa fields of temperature, specific humidity, and vector wind from the ERA5 reanalysis. Gridded probabilities from the CNN are converted to 2D frontal regions, which are used to create the climatology. Overall, warm and cold fronts are most common in the Pacific and Atlantic cyclone tracks and the lee of the Rockies. In contrast with prior research, we find that the activity of warm and cold fronts is significantly modulated by the phase and intensity of El Niño–Southern Oscillation. The influence of El Niño is significant for winter warm fronts, winter cold fronts, and spring cold fronts, with activity decreasing over the continental United States and shifting northward with the Pacific and Atlantic cyclone tracks. Long-term trends are generally not significant, although we find a poleward shift in frontal activity during the winter and spring, consistent with prior research. We also identify a number of regional patterns, such as a significant long-term increase in warm fronts in the eastern tropical Pacific Ocean, which are characterized almost entirely by moisture gradients rather than temperature gradients.
Abstract
This paper describes the development and analysis of an objective climatology of warm and cold fronts over North America from 1979 to 2018. Fronts are detected by a convolutional neural network (CNN), trained to emulate fronts drawn by human meteorologists. Predictors for the CNN are surface and 850-hPa fields of temperature, specific humidity, and vector wind from the ERA5 reanalysis. Gridded probabilities from the CNN are converted to 2D frontal regions, which are used to create the climatology. Overall, warm and cold fronts are most common in the Pacific and Atlantic cyclone tracks and the lee of the Rockies. In contrast with prior research, we find that the activity of warm and cold fronts is significantly modulated by the phase and intensity of El Niño–Southern Oscillation. The influence of El Niño is significant for winter warm fronts, winter cold fronts, and spring cold fronts, with activity decreasing over the continental United States and shifting northward with the Pacific and Atlantic cyclone tracks. Long-term trends are generally not significant, although we find a poleward shift in frontal activity during the winter and spring, consistent with prior research. We also identify a number of regional patterns, such as a significant long-term increase in warm fronts in the eastern tropical Pacific Ocean, which are characterized almost entirely by moisture gradients rather than temperature gradients.
Abstract
Probabilistic quantitative precipitation forecasts challenge meteorologists due to the wide variability of precipitation amounts over small areas and their dependence on conditions at multiple spatial and temporal scales. Ensembles of convection-allowing numerical weather prediction models offer a way to produce improved precipitation forecasts and estimates of the forecast uncertainty. These models allow for the prediction of individual convective storms on the model grid, but they often displace the storms in space, time, and intensity, which results in added uncertainty. Machine learning methods can produce calibrated probabilistic forecasts from the raw ensemble data that correct for systemic biases in the ensemble precipitation forecast and incorporate additional uncertainty information from aggregations of the ensemble members and additional model variables. This study utilizes the 2010 Center for Analysis and Prediction of Storms Storm-Scale Ensemble Forecast system and the National Severe Storms Laboratory National Mosaic & Multi-Sensor Quantitative Precipitation Estimate as input data for training logistic regressions and random forests to produce a calibrated probabilistic quantitative precipitation forecast. The reliability and discrimination of the forecasts are compared through verification statistics and a case study.
Abstract
Probabilistic quantitative precipitation forecasts challenge meteorologists due to the wide variability of precipitation amounts over small areas and their dependence on conditions at multiple spatial and temporal scales. Ensembles of convection-allowing numerical weather prediction models offer a way to produce improved precipitation forecasts and estimates of the forecast uncertainty. These models allow for the prediction of individual convective storms on the model grid, but they often displace the storms in space, time, and intensity, which results in added uncertainty. Machine learning methods can produce calibrated probabilistic forecasts from the raw ensemble data that correct for systemic biases in the ensemble precipitation forecast and incorporate additional uncertainty information from aggregations of the ensemble members and additional model variables. This study utilizes the 2010 Center for Analysis and Prediction of Storms Storm-Scale Ensemble Forecast system and the National Severe Storms Laboratory National Mosaic & Multi-Sensor Quantitative Precipitation Estimate as input data for training logistic regressions and random forests to produce a calibrated probabilistic quantitative precipitation forecast. The reliability and discrimination of the forecasts are compared through verification statistics and a case study.
Abstract
This paper describes the use of convolutional neural nets (CNN), a type of deep learning, to identify fronts in gridded data, followed by a novel postprocessing method that converts probability grids to objects. Synoptic-scale fronts are often associated with extreme weather in the midlatitudes. Predictors are 1000-mb (1 mb = 1 hPa) grids of wind velocity, temperature, specific humidity, wet-bulb potential temperature, and/or geopotential height from the North American Regional Reanalysis. Labels are human-drawn fronts from Weather Prediction Center bulletins. We present two experiments to optimize parameters of the CNN and object conversion. To evaluate our system, we compare the objects (predicted warm and cold fronts) with human-analyzed warm and cold fronts, matching fronts of the same type within a 100- or 250-km neighborhood distance. At 250 km our system obtains a probability of detection of 0.73, success ratio of 0.65 (or false-alarm rate of 0.35), and critical success index of 0.52. These values drastically outperform the baseline, which is a traditional method from numerical frontal analysis. Our system is not intended to replace human meteorologists, but to provide an objective method that can be applied consistently and easily to a large number of cases. Our system could be used, for example, to create climatologies and quantify the spread in forecast frontal properties across members of a numerical weather prediction ensemble.
Abstract
This paper describes the use of convolutional neural nets (CNN), a type of deep learning, to identify fronts in gridded data, followed by a novel postprocessing method that converts probability grids to objects. Synoptic-scale fronts are often associated with extreme weather in the midlatitudes. Predictors are 1000-mb (1 mb = 1 hPa) grids of wind velocity, temperature, specific humidity, wet-bulb potential temperature, and/or geopotential height from the North American Regional Reanalysis. Labels are human-drawn fronts from Weather Prediction Center bulletins. We present two experiments to optimize parameters of the CNN and object conversion. To evaluate our system, we compare the objects (predicted warm and cold fronts) with human-analyzed warm and cold fronts, matching fronts of the same type within a 100- or 250-km neighborhood distance. At 250 km our system obtains a probability of detection of 0.73, success ratio of 0.65 (or false-alarm rate of 0.35), and critical success index of 0.52. These values drastically outperform the baseline, which is a traditional method from numerical frontal analysis. Our system is not intended to replace human meteorologists, but to provide an objective method that can be applied consistently and easily to a large number of cases. Our system could be used, for example, to create climatologies and quantify the spread in forecast frontal properties across members of a numerical weather prediction ensemble.
Abstract
Heatwaves are projected to increase in frequency and severity with global warming. Improved warning systems would help reduce the associated loss of lives, wildfires, power disruptions, and reduction in crop yields. In this work, we explore the potential for deep learning systems trained on historical data to forecast extreme heat on short, medium and subseasonal time scales. To this purpose, we train a set of neural weather models (NWMs) with convolutional architectures to forecast surface temperature anomalies globally, 1 to 28 days ahead, at ∼200-km resolution and on the cubed sphere. The NWMs are trained using the ERA5 reanalysis product and a set of candidate loss functions, including the mean-square error and exponential losses targeting extremes. We find that training models to minimize custom losses tailored to emphasize extremes leads to significant skill improvements in the heatwave prediction task, relative to NWMs trained on the mean-square-error loss. This improvement is accomplished with almost no skill reduction in the general temperature prediction task, and it can be efficiently realized through transfer learning, by retraining NWMs with the custom losses for a few epochs. In addition, we find that the use of a symmetric exponential loss reduces the smoothing of NWM forecasts with lead time. Our best NWM is able to outperform persistence in a regressive sense for all lead times and temperature anomaly thresholds considered, and shows positive regressive skill relative to the ECMWF subseasonal-to-seasonal control forecast after 2 weeks.
Significance Statement
Heatwaves are projected to become stronger and more frequent as a result of global warming. Accurate forecasting of these events would enable the implementation of effective mitigation strategies. Here we analyze the forecast accuracy of artificial intelligence systems trained on historical surface temperature data to predict extreme heat events globally, 1 to 28 days ahead. We find that artificial intelligence systems trained to focus on extreme temperatures are significantly more accurate at predicting heatwaves than systems trained to minimize errors in surface temperatures and remain equally skillful at predicting moderate temperatures. Furthermore, the extreme-focused systems compete with state-of-the-art physics-based forecast systems in the subseasonal range, while incurring a much lower computational cost.
Abstract
Heatwaves are projected to increase in frequency and severity with global warming. Improved warning systems would help reduce the associated loss of lives, wildfires, power disruptions, and reduction in crop yields. In this work, we explore the potential for deep learning systems trained on historical data to forecast extreme heat on short, medium and subseasonal time scales. To this purpose, we train a set of neural weather models (NWMs) with convolutional architectures to forecast surface temperature anomalies globally, 1 to 28 days ahead, at ∼200-km resolution and on the cubed sphere. The NWMs are trained using the ERA5 reanalysis product and a set of candidate loss functions, including the mean-square error and exponential losses targeting extremes. We find that training models to minimize custom losses tailored to emphasize extremes leads to significant skill improvements in the heatwave prediction task, relative to NWMs trained on the mean-square-error loss. This improvement is accomplished with almost no skill reduction in the general temperature prediction task, and it can be efficiently realized through transfer learning, by retraining NWMs with the custom losses for a few epochs. In addition, we find that the use of a symmetric exponential loss reduces the smoothing of NWM forecasts with lead time. Our best NWM is able to outperform persistence in a regressive sense for all lead times and temperature anomaly thresholds considered, and shows positive regressive skill relative to the ECMWF subseasonal-to-seasonal control forecast after 2 weeks.
Significance Statement
Heatwaves are projected to become stronger and more frequent as a result of global warming. Accurate forecasting of these events would enable the implementation of effective mitigation strategies. Here we analyze the forecast accuracy of artificial intelligence systems trained on historical surface temperature data to predict extreme heat events globally, 1 to 28 days ahead. We find that artificial intelligence systems trained to focus on extreme temperatures are significantly more accurate at predicting heatwaves than systems trained to minimize errors in surface temperatures and remain equally skillful at predicting moderate temperatures. Furthermore, the extreme-focused systems compete with state-of-the-art physics-based forecast systems in the subseasonal range, while incurring a much lower computational cost.
Abstract
Real-time prediction of storm longevity is a critical challenge for National Weather Service (NWS) forecasters. These predictions can guide forecasters when they issue warnings and implicitly inform them about the potential severity of a storm. This paper presents a machine-learning (ML) system that was used for real-time prediction of storm longevity in the Probabilistic Hazard Information (PHI) tool, making it a Research-to-Operations (R2O) project. Currently, PHI provides forecasters with real-time storm variables and severity predictions from the ProbSevere system, but these predictions do not include storm longevity. We specifically designed our system to be tested in PHI during the 2016 and 2017 Hazardous Weather Testbed (HWT) experiments, which are a quasi-operational naturalistic environment. We considered three ML methods that have proven in prior work to be strong predictors for many weather prediction tasks: elastic nets, random forests, and gradient-boosted regression trees. We present experiments comparing the three ML methods with different types of input data, discuss trade-offs between forecast quality and requirements for real-time deployment, and present both subjective (human-based) and objective evaluation of real-time deployment in the HWT. Results demonstrate that the ML system has lower error than human forecasters, which suggests that it could be used to guide future storm-based warnings, enabling forecasters to focus on other aspects of the warning system.
Abstract
Real-time prediction of storm longevity is a critical challenge for National Weather Service (NWS) forecasters. These predictions can guide forecasters when they issue warnings and implicitly inform them about the potential severity of a storm. This paper presents a machine-learning (ML) system that was used for real-time prediction of storm longevity in the Probabilistic Hazard Information (PHI) tool, making it a Research-to-Operations (R2O) project. Currently, PHI provides forecasters with real-time storm variables and severity predictions from the ProbSevere system, but these predictions do not include storm longevity. We specifically designed our system to be tested in PHI during the 2016 and 2017 Hazardous Weather Testbed (HWT) experiments, which are a quasi-operational naturalistic environment. We considered three ML methods that have proven in prior work to be strong predictors for many weather prediction tasks: elastic nets, random forests, and gradient-boosted regression trees. We present experiments comparing the three ML methods with different types of input data, discuss trade-offs between forecast quality and requirements for real-time deployment, and present both subjective (human-based) and objective evaluation of real-time deployment in the HWT. Results demonstrate that the ML system has lower error than human forecasters, which suggests that it could be used to guide future storm-based warnings, enabling forecasters to focus on other aspects of the warning system.
Abstract
Recent research has shown that random forests (RFs) can create skillful probabilistic severe weather hazard forecasts from numerical weather prediction (NWP) ensemble data. However, it remains unclear how RFs use NWP data and how predictors should be generated from NWP ensembles. This paper compares two methods for creating RFs for next-day severe weather prediction using simulated forecast data from the convection-allowing High-Resolution Ensemble Forecast System, version 2.1 (HREFv2.1). The first method uses predictors from individual ensemble members (IM) at the point of prediction, while the second uses ensemble mean (EM) predictors at multiple spatial points. IM and EM RFs are trained with all predictors as well as predictor subsets, and the Python module tree interpreter (TI) is used to assess RF variable importance and the relationships learned by the RFs. Results show that EM RFs have better objective skill compared to similarly configured IM RFs for all hazards, presumably because EM predictors contain less noise. In both IM and EM RFs, storm variables are found to be most important, followed by index and environment variables. Interestingly, RFs created from storm and index variables tend to produce forecasts with greater or equal skill than those from the all-predictor RFs. TI analysis shows that the RFs emphasize different predictors for different hazards in a way that makes physical sense. Further, TI shows that RFs create calibrated hazard probabilities based on complex, multivariate relationships that go well beyond thresholding 2–5-km updraft helicity.
Abstract
Recent research has shown that random forests (RFs) can create skillful probabilistic severe weather hazard forecasts from numerical weather prediction (NWP) ensemble data. However, it remains unclear how RFs use NWP data and how predictors should be generated from NWP ensembles. This paper compares two methods for creating RFs for next-day severe weather prediction using simulated forecast data from the convection-allowing High-Resolution Ensemble Forecast System, version 2.1 (HREFv2.1). The first method uses predictors from individual ensemble members (IM) at the point of prediction, while the second uses ensemble mean (EM) predictors at multiple spatial points. IM and EM RFs are trained with all predictors as well as predictor subsets, and the Python module tree interpreter (TI) is used to assess RF variable importance and the relationships learned by the RFs. Results show that EM RFs have better objective skill compared to similarly configured IM RFs for all hazards, presumably because EM predictors contain less noise. In both IM and EM RFs, storm variables are found to be most important, followed by index and environment variables. Interestingly, RFs created from storm and index variables tend to produce forecasts with greater or equal skill than those from the all-predictor RFs. TI analysis shows that the RFs emphasize different predictors for different hazards in a way that makes physical sense. Further, TI shows that RFs create calibrated hazard probabilities based on complex, multivariate relationships that go well beyond thresholding 2–5-km updraft helicity.