Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Anastasia Romanou x
  • Refine by Access: All Content x
Clear All Modify Search
Anastasia Romanou
and
Georges L. Weatherly

Abstract

The response of the turbulent buoyant bottom Ekman layer near a temperature front over uniform topography is studied here. The background stratification is variable across the slope; the upper slope is either neutrally or stably stratified at one-half of the gradient of the lower slope region. In case 1, a time-dependent, spatially uniform, along-isobath interior current with zero mean causes residual circulation across the boundary layer and net detachment of the fluid from the boundary layer. For forcing with time scales longer than the shutdown time scale [τ 0 = f/()2; e.g., as defined by McCready and Rhines, where f is the Coriolis parameter, N is the Brunt– Väisälä frequency in the lower slope region, and α is the bottom slope], it is shown that the front represents an area of strong mean flow convergence and subsequent net detrainment of boundary layer fluid into the interior and is also a region of significant relative vorticity generation by the mean field. The residual circulation occurs in the stratified region. However, its direction and magnitude are subject to the order at which the downwelling and the upwelling phases occur because the lower and upper parts of the boundary layer respond differently to the two phases. The results are sensitive to the choice of background diffusivity. Tidal forcing produces significant differentiation in the results only when superimposed to the low-frequency current. The mean circulation then has much weaker downslope and along-slope components to the right of the front (i.e., seaward of the front). The strength of the detrainment at the front is found to be the same as in the low-frequency forcing case. In case 2, constant southward current causes convergence in the boundary layer, upwelling into the interior, vertical displacement of the isopycnals, and, through the thermal wind balance, a southward jet in the interior. This jet, which is the result of boundary layer dynamics and the presence of a front, could relate and explain the shelfbreak jet. As is shown here, a possible mechanism for the formation of an along-isobath jet (not just a shelfbreak jet) is the convergence in the bottom boundary layer, which, according to buoyant Ekman layer theory, may occur in the presence of one at least of the following: a front that intersects the bottom of constant inclination or constant stratification and a shelfbreak.

Full access
Anastasia Romanou
,
William B. Rossow
, and
Shu-Hsien Chou

Abstract

In the first part of the paper, a high space–time resolution (1° latitude/longitude and daily) dataset of the turbulent fluxes at the ocean surface is used to estimate and study the seasonal to annual near-global maps of the decorrelation scales of the latent and sensible heat fluxes. The decorrelation scales describe the temporal and spatial patterns that dominate the flux fields (within a bandpass window) and hence reveal the dominant variability in the air–sea interaction. Regional comparison to the decorrelation scales of the flux-related variables such as the wind stress, the humidity difference, and the SST identifies the main mechanism responsible for the variability in each flux field.

In the second part of the paper, the decorrelation scales are used to develop a method for filling missing values in the dataset that result from the incomplete satellite coverage. Weight coefficients in a linear regression function are determined from the spatial and temporal decorrelations and are functions of zonal and meridional distance and time. Therefore they account for all spatial and temporal patterns on scales greater than 1 day and 1° latitude/longitude and less than 1 yr and the ocean basin scale. The method is evaluated by simulating the missing-value distribution of the Goddard Satellite-Based Surface Turbulent Fluxes, version 2 (GSSTF2) dataset in the NCEP SST, the International Satellite Climatology Project (ISCCP)-FD (fluxes calculated using D1 series) surface radiation, and the Global Precipitation Climatology Project (GPCP) datasets and by comparing the filled datasets to the original ones. Main advantages of the method are that the decorrelation scales are unrestricted functions of space and time; only information internal to the flux field is used in the interpolation scheme, and the computation cost of the method is low enough to facilitate its use in similar large datasets.

Full access
Qian Li
,
John Marshall
,
Craig D. Rye
,
Anastasia Romanou
,
David Rind
, and
Maxwell Kelley

Abstract

Both the Greenland and Antarctic ice sheets have been melting at an accelerating rate over recent decades. Meltwater from Greenland might be expected to initiate a climate response that is distinct, and perhaps different from, that associated with Antarctic meltwater. Which one might elicit a greater climate response, and what mechanisms are involved? To explore these questions, we apply climate response functions (CRFs) to guide a series of meltwater-perturbation experiments using a fully coupled climate model. In both hemispheres, meltwater drives atmospheric cooling, sea ice expansion, and strengthened Hadley and Ferrel cells. Greenland meltwater induces a slowdown of the Atlantic meridional overturning circulation (AMOC) and a cooling of the subsurface ocean in the northern high latitudes. Antarctic meltwater, instead, induces a slowdown of the Antarctic Bottom Water formation and a warming of the subsurface ocean around Antarctica. For melt rates up to 2000 Gt yr−1, the climate response is rather linear. However, as melt rates increase to 5000 Gt yr−1, the climate response becomes nonlinear. Due to a collapsed AMOC, the climate response is superlinear at high Greenland melt rates. Instead, the climate response is sublinear at high Antarctic melt rates, due to the halting of the northward expansion of Antarctic sea ice by warm surface waters. Finally, in the linear limit, we use CRFs and linear convolution theory to make projections of important climate parameters in response to meltwater scenarios, which suggest that Antarctic meltwater will become a major driver of climate change, dominating that of Greenland meltwater, as the current century proceeds.

Significance Statement

Melting of the Greenland and Antarctic ice sheets is one of the most uncertain potential contributors to future climate change. In this study, we address the comparative role of Greenland and Antarctic meltwater in the climate system and explore the differing mechanisms at work in each hemisphere. We find that the climate response is linear for low melt rates but becomes nonlinear for high melt rates. As the century proceeds, we speculate that Antarctic meltwater will increasingly dominate that of Greenland meltwater, leading to atmospheric cooling, Antarctic sea ice expansion, and contraction and warming of the Antarctic Bottom Water. Greenland meltwater will, instead, affect smaller changes in the Northern Hemisphere.

Restricted access
Anastasia Romanou
,
David Rind
,
Jeff Jonas
,
Ron Miller
,
Maxwell Kelley
,
Gary Russell
,
Clara Orbe
,
Larissa Nazarenko
,
Rebecca Latto
, and
Gavin A. Schmidt

Abstract

A 10-member ensemble simulation with the NASA GISS-E2-1-G climate model shows a clear bifurcation in the Atlantic meridional overturning circulation (AMOC) strength under the SSP2–4.5 extended scenario. At 26°N, the bifurcation leads to 8 strong AMOC and 2 much weaker AMOC states, while at 48°N, it leads to 8 stable AMOC-on and 2 nearly AMOC-off states, the latter lasting approximately 800 years. A variety of fully coupled models have demonstrated tipping points in AMOC through hosing experiments, i.e., prescribing sufficient freshwater inputs in the subpolar North Atlantic. In the GISS simulations, there are no external freshwater perturbations. The bifurcation arises freely in the coupled system and is the result of stochastic variability (noise-induced bifurcation) associated with sea ice transport and melting in the Irminger Sea after a slowing of the greenhouse gas forcing. While the AMOC strength follows the near shutdown of the Labrador Sea deep convection initially, the Irminger Sea salinity and deep mixing determine the timing of the AMOC recovery or near collapse at 48°N, which varies widely across the ensemble members. Other feedbacks such as ice-albedo, ice-evaporation, E − P, and the overturning salt-advection feedback play a secondary role that may enhance or reduce the primary mechanism which is ice melt. We believe this is the first time that a coupled climate model has shown such a bifurcation across an initial condition ensemble and might imply that there is a chance for significant and prolonged AMOC slow down due to internal variability of the system.

Significance Statement

We believe this is the first time that divergent AMOC behavior has been reported for an ensemble of Earth system model simulations using identical climate forcing and no prescribed freshwater perturbations. This response is a manifestation of noise-induced bifurcation, enhanced by feedbacks, revealing the role stochastic (or intrinsic) variability may play in AMOC stability.

Restricted access
Feili Li
,
M. Susan Lozier
,
Gokhan Danabasoglu
,
Naomi P. Holliday
,
Young-Oh Kwon
,
Anastasia Romanou
,
Steve G. Yeager
, and
Rong Zhang

Abstract

While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.

Full access
Clara Orbe
,
David Rind
,
Ron L. Miller
,
Larissa S. Nazarenko
,
Anastasia Romanou
,
Jeffrey Jonas
,
Gary L. Russell
,
Maxwell Kelley
, and
Gavin A. Schmidt

Abstract

Climate models project a future weakening of the Atlantic meridional overturning circulation (AMOC), but the impacts of this weakening on climate remain highly uncertain. A key challenge in quantifying the impact of an AMOC decline is in isolating its influence on climate, relative to other changes associated with increased greenhouse gases. Here we isolate the climate impacts of a weakened AMOC in the broader context of a warming climate using a unique ensemble of Shared Socioeconomic Pathway (SSP) 2–4.5 integrations that was performed using the Climate Model Intercomparison Project phase 6 (CMIP6) version of the NASA Goddard Institute for Space Studies ModelE (E2.1). In these runs internal variability alone results in a spontaneous bifurcation of the ocean flow, wherein 2 out of 10 ensemble members exhibit an entire AMOC collapse, while the other 8 members recover at various stages despite identical forcing of each ensemble member and with no externally prescribed freshwater perturbation. We show that an AMOC collapse results in an abrupt northward shift and strengthening of the Northern Hemisphere (NH) Hadley cell (HC) and intensification of the northern midlatitude eddy-driven jet. We then use a set of coupled atmosphere–ocean abrupt CO2 experiments spanning the range 1 times to 5 times CO2 (1x to 5xCO2) to show that this response to an AMOC collapse results in a nonlinear shift in the NH circulation moving from 2xCO2 to 3xCO2. Slab-ocean versions of these experiments, by comparison, do not capture this nonlinear behavior. Our results suggest that changes in ocean heat flux convergences associated with an AMOC collapse—while highly uncertain—can result in profound changes in the NH circulation and continued efforts to constrain the AMOC response to future climate change are needed.

Restricted access
Gavin A. Schmidt
,
Reto Ruedy
,
James E. Hansen
,
Igor Aleinov
,
Nadine Bell
,
Mike Bauer
,
Susanne Bauer
,
Brian Cairns
,
Vittorio Canuto
,
Ye Cheng
,
Anthony Del Genio
,
Greg Faluvegi
,
Andrew D. Friend
,
Tim M. Hall
,
Yongyun Hu
,
Max Kelley
,
Nancy Y. Kiang
,
Dorothy Koch
,
Andy A. Lacis
,
Jean Lerner
,
Ken K. Lo
,
Ron L. Miller
,
Larissa Nazarenko
,
Valdar Oinas
,
Jan Perlwitz
,
Judith Perlwitz
,
David Rind
,
Anastasia Romanou
,
Gary L. Russell
,
Makiko Sato
,
Drew T. Shindell
,
Peter H. Stone
,
Shan Sun
,
Nick Tausnev
,
Duane Thresher
, and
Mao-Sung Yao

Abstract

A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere temperatures and winds, cloud heights, precipitation, and sea level pressure. Data–model comparisons continue, however, to highlight persistent problems in the marine stratocumulus regions.

Full access