Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Anastasios A. Tsonis x
  • Refine by Access: All Content x
Clear All Modify Search
Anastasios A. Tsonis
,
Kyle L. Swanson
, and
Geli Wang

Abstract

In a recent application of networks to 500-hPa data, it was found that supernodes in the network correspond to major teleconnection. More specifically, in the Northern Hemisphere a set of supernodes coincides with the North Atlantic Oscillation (NAO) and another set is located in the area where the Pacific–North American (PNA) and the tropical Northern Hemisphere (TNH) patterns are found. It was subsequently suggested that the presence of atmospheric teleconnections make climate more stable and more efficient in transferring information. Here this hypothesis is tested by examining the topology of the complete network as well as of the networks without teleconnections. It is found that indeed without teleconnections the network becomes less stable and less efficient in transferring information. It was also found that the pattern chiefly responsible for this mechanism in the extratropics is the NAO. The other patterns are simply a linear response of the activity in the tropics and their role in this mechanism is inconsequential.

Full access
Anastasios A. Tsonis
,
Kyle L. Swanson
, and
Paul J. Roebber

The study of networks has recently exploded into a major research tool in many areas of science. The discovery of “small world” and scale-free networks has led to many new insights about the collective behavior of a large number of interacting agents and complex systems. Here we introduce the basic ideas behind networks, as well as some initial applications of networks to the climate system. Our results suggest that the climate system exhibits aspects of small-world networks as well as scale-free networks, with supernodes corresponding to major teleconnection patterns. This result suggests that the organization of teleconnections may play a role in the stability of the climate system. In addition, preliminary work suggests that temporal changes in the network's architecture may be used to identify signatures of global change. These and other applications suggest that networks provide a new tool for investigating and reconstructing climate dynamics from both models and observations.

Full access
James B. Elsner
,
Anastasios A. Tsonis
, and
Thomas H Jagger

The power dissipation of Atlantic tropical cyclones has risen dramatically during the last decades and the increase is correlated with an increase in the underlying sea surface temperature (SST) at low (decadal) frequencies. Because of the large positive correlation between global mean surface air temperature (GT) and Atlantic SST it has been speculated that increases in the power dissipation might, in part, be related to human activity. Here we investigate the question of the relationship between GT and hurricane power dissipation directly using statistical analysis and show that after removing the effect of SST, the correlation between GT and hurricane power dissipation is negative. This suggests that the positive influence of global temperature on Atlantic hurricanes appears to be limited to an indirect connection with tropical Atlantic SST. We also show that the relationship between hurricane power dissipation and Atlantic SST is significant at the high-frequency time scales. El Niño–Southern Oscillation (ENSO) plays an important role in statistically explaining the variations in hurricane power at these higher frequencies.

Full access