Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: André Vargas x
  • All content x
Clear All Modify Search
J. Mauro Vargas-Hernández, Susan E. Wijffels, Gary Meyers, André Belo do Couto, and Neil J. Holbrook


Studies of decadal-to-multidecadal ocean subsurface temperature variability are fundamental to improving the understanding of low-frequency climate signals. The present study uses the Simple Ocean Data Assimilation (SODA) version 2.2.4 product for the period 1950–2007 to identify decadal modes of variability that characterize the upper Indo-Pacific Ocean temperature structure (5–466-m depth). An empirical orthogonal function (EOF) analysis of the 10-yr low-pass filtered temperature field applied across four depths shows that the dominant mode is characterized by a long-term temperature trend, with warming at the surface and cooling at the thermocline depth connecting the tropical western Pacific with the southern Indian Ocean via the Indonesian Seas. EOF analysis of the detrended 10-yr filtered temperature data and correlation analyses of the EOF time series with established large-scale climate indices identified the interdecadal Pacific oscillation as EOF1, the North Pacific Gyre Oscillation as EOF2, and the decadal component of El Niño Modoki as EOF3 (respectively, modes 2, 3, and 4 of the nondetrended data). EOF2 identifies the Atlantic multidecadal oscillation when the analysis is applied to sea surface temperature anomalies only, suggesting that the surface is forced dominantly by fluxes associated with global-scale weather patterns, while the subsurface is dominantly forced by internal dynamics of the Pacific Ocean. This paper demonstrates that the decadal-to-interdecadal temperature variability in SODA has a pronounced vertical extension through the upper ocean. The upper thermocline accounts for most of the variance in the analysis. These results reinforce the importance of examining the subsurface ocean in climate dynamics studies that seek to understand the ocean’s role.

Full access
Stephen A. Cohn, Terry Hock, Philippe Cocquerez, Junhong Wang, Florence Rabier, David Parsons, Patrick Harr, Chun-Chieh Wu, Philippe Drobinski, Fatima Karbou, Stéphanie Vénel, André Vargas, Nadia Fourrié, Nathalie Saint-Ramond, Vincent Guidard, Alexis Doerenbecher, Huang-Hsiung Hsu, Po-Hsiung Lin, Ming-Dah Chou, Jean-Luc Redelsperger, Charlie Martin, Jack Fox, Nick Potts, Kathryn Young, and Hal Cole

Constellations of driftsonde systems— gondolas floating in the stratosphere and able to release dropsondes upon command— have so far been used in three major field experiments from 2006 through 2010. With them, high-quality, high-resolution, in situ atmospheric profiles were made over extended periods in regions that are otherwise very difficult to observe. The measurements have unique value for verifying and evaluating numerical weather prediction models and global data assimilation systems; they can be a valuable resource to validate data from remote sensing instruments, especially on satellites, but also airborne or ground-based remote sensors. These applications for models and remote sensors result in a powerful combination for improving data assimilation systems. Driftsondes also can support process studies in otherwise difficult locations—for example, to study factors that control the development or decay of a tropical disturbance, or to investigate the lower boundary layer over the interior Antarctic continent. The driftsonde system is now a mature and robust observing system that can be combined with flight-level data to conduct multidisciplinary research at heights well above that reached by current research aircraft. In this article we describe the development and capabilities of the driftsonde system, the exemplary science resulting from its use to date, and some future applications.

Full access
Florence Rabier, Steve Cohn, Philippe Cocquerez, Albert Hertzog, Linnea Avallone, Terry Deshler, Jennifer Haase, Terry Hock, Alexis Doerenbecher, Junhong Wang, Vincent Guidard, Jean-Noël Thépaut, Rolf Langland, Andrew Tangborn, Gianpaolo Balsamo, Eric Brun, David Parsons, Jérôme Bordereau, Carla Cardinali, François Danis, Jean-Pierre Escarnot, Nadia Fourrié, Ron Gelaro, Christophe Genthon, Kayo Ide, Lars Kalnajs, Charlie Martin, Louis-François Meunier, Jean-Marc Nicot, Tuuli Perttula, Nicholas Potts, Patrick Ragazzo, David Richardson, Sergio Sosa-Sesma, and André Vargas
Full access