Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Andrea Alessandri x
  • Refine by Access: All Content x
Clear All Modify Search
Andrea Alessandri, Andrea Borrelli, Silvio Gualdi, Enrico Scoccimarro, and Simona Masina

Abstract

This study investigates the predictability of tropical cyclone (TC) seasonal count anomalies using the Centro Euro-Mediterraneo per i Cambiamenti Climatici–Istituto Nazionale di Geofisica e Vulcanologia (CMCC-INGV) Seasonal Prediction System (SPS). To this aim, nine-member ensemble forecasts for the period 1992–2001 for two starting dates per year were performed. The skill in reproducing the observed TC counts has been evaluated after the application of a TC location and tracking detection method to the retrospective forecasts. The SPS displays good skill in predicting the observed TC count anomalies, particularly over the tropical Pacific and Atlantic Oceans. The simulated TC activity exhibits realistic geographical distribution and interannual variability, thus indicating that the model is able to reproduce the major basic mechanisms that link the TCs’ occurrence with the large-scale circulation. TC count anomalies prediction has been found to be sensitive to the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations performed without assimilated initial conditions, the results indicate that the assimilation significantly improves the prediction of the TC count anomalies over the eastern North Pacific Ocean (ENP) and northern Indian Ocean (NI) during boreal summer. During the austral counterpart, significant progresses over the area surrounding Australia (AUS) and in terms of the probabilistic quality of the predictions also over the southern Indian Ocean (SI) were evidenced. The analysis shows that the improvement in the prediction of anomalous TC counts follows the enhancement in forecasting daily anomalies in sea surface temperature due to subsurface ocean initialization. Furthermore, the skill changes appear to be in part related to forecast differences in convective available potential energy (CAPE) over the ENP and the North Atlantic Ocean (ATL), in wind shear over the NI, and in both CAPE and wind shear over the SI.

Full access
Andrea Alessandri, Silvio Gualdi, Jan Polcher, and Antonio Navarra

Abstract

A land surface model (LSM) has been included in the ECMWF Hamburg version 4 (ECHAM4) atmospheric general circulation model (AGCM). The LSM is an early version of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land surface–vegetation processes affects the simulated boreal summer surface climate.

To investigate the impacts on the simulated climate, different sets of Atmospheric Model Intercomparison Project (AMIP)-type simulations have been performed with ECHAM4 alone and with the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of ECHAM4 with the LSM has been implemented at different horizontal resolutions.

The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and midlatitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas.

Because of the socioeconomical relevance, particular attention has been devoted to the Indian summer monsoon (ISM) region. The results of this study indicate that precipitation over the Indian subcontinent is better simulated with the coupled ECHAM4–ORCHIDEE model compared to the atmospheric model alone.

Full access
Andrea Alessandri, Andrea Borrelli, Annalisa Cherchi, Stefano Materia, Antonio Navarra, June-Yi Lee, and Bin Wang

Abstract

Ensembles of retrospective 2-month dynamical forecasts initiated on 1 May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989–2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmosphere with initial conditions taken from reanalysis. Two objective large-scale methods based on dynamical-circulation and hydrological indices are applied to detect the ISM onset. The SSPs show some skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northward-propagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northward-propagating intraseasonal modes trigger the monsoon in some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of late onsets is not noticeably improved by the initialization of the atmosphere. It is suggested that late onsets of the monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.

Full access
Andrea Alessandri, Andrea Borrelli, Antonio Navarra, Alberto Arribas, Michel Déqué, Philippe Rogel, and Antje Weisheimer

Abstract

The performance of the new multimodel seasonal prediction system developed in the framework of the European Commission FP7 project called ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) is compared with the results from the previous project [i.e., Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER)]. The comparison is carried out over the five seasonal prediction systems (SPSs) that participated in both projects. Since DEMETER, the contributing SPSs have improved in all aspects with the main advancements including the increase in resolution, the better representation of subgrid physical processes, land, sea ice, and greenhouse gas boundary forcing, and the more widespread use of assimilation for ocean initialization.

The ENSEMBLES results show an overall enhancement for the prediction of anomalous surface temperature conditions. However, the improvement is quite small and with considerable space–time variations. In the tropics, ENSEMBLES systematically improves the sharpness and the discrimination attributes of the forecasts. Enhancements of the ENSEMBLES resolution attribute are also reported in the tropics for the forecasts started 1 February, 1 May, and 1 November. Our results indicate that, in ENSEMBLES, an increased portion of prediction signal from the single-models effectively contributes to amplify the multimodel forecasts skill. On the other hand, a worsening is shown for the multimodel calibration over the tropics compared to DEMETER.

Significant changes are also shown in northern midlatitudes, where the ENSEMBLES multimodel discrimination, resolution, and reliability improve for February, May, and November starting dates. However, the ENSEMBLES multimodel decreases the capability to amplify the performance with respect to the contributing single models for the forecasts started in February, May, and August. This is at least partly due to the reduced overconfidence of the ENSEMBLES single models with respect to the DEMETER counterparts.

Provided that they are suitably calibrated beforehand, it is shown that the ENSEMBLES multimodel forecasts represent a step forward for the potential economical value they can supply. A warning for all potential users concerns the need for calibration due to the degraded tropical reliability compared to DEMETER. In addition, the superiority of recalibrating the ENSEMBLES predictions through the discrimination information is shown.

Concerning the forecasts started in August, ENSEMBLES exhibits mixed results over both tropics and northern midlatitudes. In this case, the increased potential predictability compared to DEMETER appears to be balanced by the reduction in the independence of the SPSs contributing to ENSEMBLES. Consequently, for the August start dates no clear advantage of using one multimodel system instead of the other can be evidenced.

Full access
Andrea Alessandri, Andrea Borrelli, Simona Masina, Annalisa Cherchi, Silvio Gualdi, Antonio Navarra, Pierluigi Di Pietro, and Andrea F. Carril

Abstract

The development of the Istituto Nazionale di Geofisica e Vulcanologia (INGV)–Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Seasonal Prediction System (SPS) is documented. In this SPS the ocean initial-conditions estimation includes a reduced-order optimal interpolation procedure for the assimilation of temperature and salinity profiles at the global scale. Nine-member ensemble forecasts have been produced for the period 1991–2003 for two starting dates per year in order to assess the impact of the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations (i.e., without assimilation of subsurface profiles during ocean initialization), it is shown that the improved ocean initialization increases the skill in the prediction of tropical Pacific sea surface temperatures of the system for boreal winter forecasts. Considering the forecast of the 1997/98 El Niño, the data assimilation in the ocean initial conditions leads to a considerable improvement in the representation of its onset and development. The results presented in this paper indicate a better prediction of global-scale surface climate anomalies for the forecasts started in November, probably because of the improvement in the tropical Pacific. For boreal winter, significant increases in the capability of the system to discriminate above-normal and below-normal temperature anomalies are shown in both the tropics and extratropics.

Full access
Stefano Materia, Paul A. Dirmeyer, Zhichang Guo, Andrea Alessandri, and Antonio Navarra

Abstract

The discharge of freshwater into oceans represents a fundamental process in the global climate system, and this flux is taken into account in simulations with general circulation models (GCMs). Moreover, the availability of realistic river routing schemes is a powerful instrument to assess the validity of land surface components, which have been recognized to be crucial for the global climate simulation. In this study, surface and subsurface runoff generated by the 13 land surface schemes (LSSs) participating in the Second Global Soil Wetness Project (GSWP-2) are used as input fields for the Hydrology Discharge (HD) routing model to simulate discharge for 30 of the world’s largest rivers. The simplest land surface models do not provide a good representation of runoff, and routed river flows using these inputs are affected by many biases. On the other hand, HD shows the best simulations when forced by two of the more sophisticated schemes. The multimodel ensemble GSWP-2 generates the best phasing of the annual cycle as well as a good representation of absolute values, although the ensemble mean tends to smooth the peaks. Finally, the intermodel comparison shows the limits and deficiencies of a velocity-constant routing model such as HD, particularly in the phase of mean annual discharge.

The second part of the study assesses the sensitivity of river discharge to the variation of external meteorological forcing. The Center for Ocean–Land–Atmosphere Studies version of the SSiB model is constrained with different meteorological fields and the resulting runoff is used as input for HD. River flow is most sensitive to precipitation variability, but changes in radiative forcing affect discharge as well, presumably because of the interaction with evaporation. Also, this analysis provides an estimate of the sensitivity of river discharge to precipitation variations. A few areas (e.g., central and eastern Asia, the Mediterranean, and much of the United States) show a magnified response of river discharge to a given percentage change in precipitation. Hence, an amplified effect of droughts as indicated by the consensus of climate change predictions may occur in places such as the Mediterranean. Conversely, increasing summer precipitation foreseen in places like southern and eastern Asia may amplify floods in these poor and heavily populated regions. Globally, a 1% fluctuation in precipitation forcing results in an average 2.3% change in discharge. These results can be used for the definition and assessment of new strategies for land use and water management in the near future.

Full access
Stefano Materia, Andrea Borrelli, Alessio Bellucci, Andrea Alessandri, Pierluigi Di Pietro, Panagiotis Athanasiadis, Antonio Navarra, and Silvio Gualdi

Abstract

The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, increasing the model predictive skill in the ocean. In fact, in regions characterized by strong air–sea coupling, the atmosphere initial condition affects forecast skill for several months. In particular, the ENSO region, eastern tropical Atlantic, and North Pacific benefit significantly from the atmosphere initialization. On the mainland, the effect of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects forecast skill in the following seasons. Winter forecasts in the high-latitude plains benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region and central Asia.

However, the initialization strategy based on the full value technique may not be the best choice for land surface, since soil moisture is a strongly model-dependent variable: in fact, initialization through land surface reanalysis does not systematically guarantee a skill improvement. Nonetheless, using a different initialization strategy for land, as opposed to atmosphere and ocean, may generate inconsistencies. Overall, the introduction of a realistic initialization for land and atmosphere substantially increases skill and accuracy. However, further developments in the procedure for land surface initialization are required for more accurate seasonal forecasts.

Full access