Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Andrea Borrelli x
  • Refine by Access: All Content x
Clear All Modify Search
Andrea Alessandri
,
Andrea Borrelli
,
Silvio Gualdi
,
Enrico Scoccimarro
, and
Simona Masina

Abstract

This study investigates the predictability of tropical cyclone (TC) seasonal count anomalies using the Centro Euro-Mediterraneo per i Cambiamenti Climatici–Istituto Nazionale di Geofisica e Vulcanologia (CMCC-INGV) Seasonal Prediction System (SPS). To this aim, nine-member ensemble forecasts for the period 1992–2001 for two starting dates per year were performed. The skill in reproducing the observed TC counts has been evaluated after the application of a TC location and tracking detection method to the retrospective forecasts. The SPS displays good skill in predicting the observed TC count anomalies, particularly over the tropical Pacific and Atlantic Oceans. The simulated TC activity exhibits realistic geographical distribution and interannual variability, thus indicating that the model is able to reproduce the major basic mechanisms that link the TCs’ occurrence with the large-scale circulation. TC count anomalies prediction has been found to be sensitive to the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations performed without assimilated initial conditions, the results indicate that the assimilation significantly improves the prediction of the TC count anomalies over the eastern North Pacific Ocean (ENP) and northern Indian Ocean (NI) during boreal summer. During the austral counterpart, significant progresses over the area surrounding Australia (AUS) and in terms of the probabilistic quality of the predictions also over the southern Indian Ocean (SI) were evidenced. The analysis shows that the improvement in the prediction of anomalous TC counts follows the enhancement in forecasting daily anomalies in sea surface temperature due to subsurface ocean initialization. Furthermore, the skill changes appear to be in part related to forecast differences in convective available potential energy (CAPE) over the ENP and the North Atlantic Ocean (ATL), in wind shear over the NI, and in both CAPE and wind shear over the SI.

Full access
Andrea Alessandri
,
Andrea Borrelli
,
Antonio Navarra
,
Alberto Arribas
,
Michel Déqué
,
Philippe Rogel
, and
Antje Weisheimer

Abstract

The performance of the new multimodel seasonal prediction system developed in the framework of the European Commission FP7 project called ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) is compared with the results from the previous project [i.e., Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER)]. The comparison is carried out over the five seasonal prediction systems (SPSs) that participated in both projects. Since DEMETER, the contributing SPSs have improved in all aspects with the main advancements including the increase in resolution, the better representation of subgrid physical processes, land, sea ice, and greenhouse gas boundary forcing, and the more widespread use of assimilation for ocean initialization.

The ENSEMBLES results show an overall enhancement for the prediction of anomalous surface temperature conditions. However, the improvement is quite small and with considerable space–time variations. In the tropics, ENSEMBLES systematically improves the sharpness and the discrimination attributes of the forecasts. Enhancements of the ENSEMBLES resolution attribute are also reported in the tropics for the forecasts started 1 February, 1 May, and 1 November. Our results indicate that, in ENSEMBLES, an increased portion of prediction signal from the single-models effectively contributes to amplify the multimodel forecasts skill. On the other hand, a worsening is shown for the multimodel calibration over the tropics compared to DEMETER.

Significant changes are also shown in northern midlatitudes, where the ENSEMBLES multimodel discrimination, resolution, and reliability improve for February, May, and November starting dates. However, the ENSEMBLES multimodel decreases the capability to amplify the performance with respect to the contributing single models for the forecasts started in February, May, and August. This is at least partly due to the reduced overconfidence of the ENSEMBLES single models with respect to the DEMETER counterparts.

Provided that they are suitably calibrated beforehand, it is shown that the ENSEMBLES multimodel forecasts represent a step forward for the potential economical value they can supply. A warning for all potential users concerns the need for calibration due to the degraded tropical reliability compared to DEMETER. In addition, the superiority of recalibrating the ENSEMBLES predictions through the discrimination information is shown.

Concerning the forecasts started in August, ENSEMBLES exhibits mixed results over both tropics and northern midlatitudes. In this case, the increased potential predictability compared to DEMETER appears to be balanced by the reduction in the independence of the SPSs contributing to ENSEMBLES. Consequently, for the August start dates no clear advantage of using one multimodel system instead of the other can be evidenced.

Full access
Andrea Alessandri
,
Andrea Borrelli
,
Annalisa Cherchi
,
Stefano Materia
,
Antonio Navarra
,
June-Yi Lee
, and
Bin Wang

Abstract

Ensembles of retrospective 2-month dynamical forecasts initiated on 1 May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989–2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmosphere with initial conditions taken from reanalysis. Two objective large-scale methods based on dynamical-circulation and hydrological indices are applied to detect the ISM onset. The SSPs show some skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northward-propagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northward-propagating intraseasonal modes trigger the monsoon in some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of late onsets is not noticeably improved by the initialization of the atmosphere. It is suggested that late onsets of the monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.

Full access
Andrea Alessandri
,
Andrea Borrelli
,
Simona Masina
,
Annalisa Cherchi
,
Silvio Gualdi
,
Antonio Navarra
,
Pierluigi Di Pietro
, and
Andrea F. Carril

Abstract

The development of the Istituto Nazionale di Geofisica e Vulcanologia (INGV)–Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Seasonal Prediction System (SPS) is documented. In this SPS the ocean initial-conditions estimation includes a reduced-order optimal interpolation procedure for the assimilation of temperature and salinity profiles at the global scale. Nine-member ensemble forecasts have been produced for the period 1991–2003 for two starting dates per year in order to assess the impact of the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations (i.e., without assimilation of subsurface profiles during ocean initialization), it is shown that the improved ocean initialization increases the skill in the prediction of tropical Pacific sea surface temperatures of the system for boreal winter forecasts. Considering the forecast of the 1997/98 El Niño, the data assimilation in the ocean initial conditions leads to a considerable improvement in the representation of its onset and development. The results presented in this paper indicate a better prediction of global-scale surface climate anomalies for the forecasts started in November, probably because of the improvement in the tropical Pacific. For boreal winter, significant increases in the capability of the system to discriminate above-normal and below-normal temperature anomalies are shown in both the tropics and extratropics.

Full access
Stefano Materia
,
Andrea Borrelli
,
Alessio Bellucci
,
Andrea Alessandri
,
Pierluigi Di Pietro
,
Panagiotis Athanasiadis
,
Antonio Navarra
, and
Silvio Gualdi

Abstract

The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, increasing the model predictive skill in the ocean. In fact, in regions characterized by strong air–sea coupling, the atmosphere initial condition affects forecast skill for several months. In particular, the ENSO region, eastern tropical Atlantic, and North Pacific benefit significantly from the atmosphere initialization. On the mainland, the effect of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects forecast skill in the following seasons. Winter forecasts in the high-latitude plains benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region and central Asia.

However, the initialization strategy based on the full value technique may not be the best choice for land surface, since soil moisture is a strongly model-dependent variable: in fact, initialization through land surface reanalysis does not systematically guarantee a skill improvement. Nonetheless, using a different initialization strategy for land, as opposed to atmosphere and ocean, may generate inconsistencies. Overall, the introduction of a realistic initialization for land and atmosphere substantially increases skill and accuracy. However, further developments in the procedure for land surface initialization are required for more accurate seasonal forecasts.

Full access
Panos J. Athanasiadis
,
Alessio Bellucci
,
Adam A. Scaife
,
Leon Hermanson
,
Stefano Materia
,
Antonella Sanna
,
Andrea Borrelli
,
Craig MacLachlan
, and
Silvio Gualdi

Abstract

Significant predictive skill for the mean winter North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) has been recently reported for a number of different seasonal forecasting systems. These findings are important in exploring the predictability of the natural system, but they are also important from a socioeconomic point of view, since the ability to predict the wintertime atmospheric circulation anomalies over the North Atlantic well ahead in time will have significant benefits for North American and European countries.

In contrast to the tropics, for the mid latitudes the predictive skill of many forecasting systems at the seasonal time scale has been shown to be low to moderate. The recent findings are promising in this regard, suggesting that better forecasts are possible, provided that key components of the climate system are initialized realistically and the coupled models are able to simulate adequately the dominant processes and teleconnections associated with low-frequency variability. It is shown that a multisystem approach has unprecedented high predictive skill for the NAO and AO, probably largely due to increasing the ensemble size and partly due to increasing model diversity.

Predicting successfully the winter mean NAO does not ensure that the respective climate anomalies are also well predicted. The NAO has a strong impact on Europe and North America, yet it only explains part of the interannual and low-frequency variability over these areas. Here it is shown with a number of different diagnostics that the high predictive skill for the NAO/AO indeed translates to more accurate predictions of temperature, surface pressure, and precipitation in the areas of influence of this teleconnection.

Full access
Panos J. Athanasiadis
,
Alessio Bellucci
,
Leon Hermanson
,
Adam A. Scaife
,
Craig MacLachlan
,
Alberto Arribas
,
Stefano Materia
,
Andrea Borrelli
, and
Silvio Gualdi

Abstract

Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes.

The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns.

Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.

Full access
Louise Crochemore
,
Stefano Materia
,
Elisa Delpiazzo
,
Stefano Bagli
,
Andrea Borrelli
,
Francesco Bosello
,
Eva Contreras
,
Francesco Dalla Valle
,
Silvio Gualdi
,
Javier Herrero
,
Francesca Larosa
,
Rafael Lopez
,
Valerio Luzzi
,
Paolo Mazzoli
,
Andrea Montani
,
Isabel Moreno
,
Valentina Pavan
,
Ilias Pechlivanidis
,
Fausto Tomei
,
Giulia Villani
,
Christiana Photiadou
,
María José Polo
, and
Jaroslav Mysiak

Abstract

Assessing the information provided by coproduced climate services is a timely challenge, given the continuously evolving scientific knowledge and its increasing translation to address societal needs. Here, we propose a joint evaluation and verification framework to assess prototype services that provide seasonal forecast information based on the experience from the Horizon 2020 (H2020) Climate forecasts enabled knowledge services (CLARA) project. The quality and value of the forecasts generated by CLARA services were first assessed for five climate services utilizing the Copernicus Climate Change Service seasonal forecasts and responding to knowledge needs from the water resources management, agriculture, and energy production sectors. This joint forecast verification and service evaluation highlights various skills and values across physical variables, services, and sectors, as well as a need to bridge the gap between verification and user-oriented evaluation. We provide lessons learned based on the service developers’ and users’ experience and recommendations to consortia that may want to deploy such verification and evaluation exercises. Last, we formalize a framework for joint verification and evaluation in service development, following a transdisciplinary (from data purveyors to service users) and interdisciplinary chain (climate, hydrology, economics, and decision analysis).

Open access