Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Andreas Schiller x
  • All content x
Clear All Modify Search
Peter R. Oke and Andreas Schiller

Abstract

A series of observing system simulation experiments (OSSEs) are performed for the tropical Indian Ocean (±15° from the equator) using a simple analysis system. The analysis system projects an array of observations onto the dominant empirical orthogonal functions (EOFs) derived from an intermediate-resolution (2° × 0.5°) ocean circulation model. This system produces maps of the depth of the 20°C isotherm (D20), representing interannual variability, and the high-pass-filtered mixed layer depth (MLD), representing intraseasonal variability. The OSSEs are designed to assess the suitability of the proposed Indian Ocean surface mooring array for resolving intraseasonal to interannual variability. While the proposed array does a reasonable job of resolving the interannual time scales, it may not adequately resolve the intraseasonal time scales. A procedure is developed to rank the importance of observation locations by determining the observation array that best projects onto the EOFs used in the analysis system. OSSEs using an optimal array clearly outperform the OSSEs using the proposed array. The configuration of the optimal array is sensitive to the number of EOFs considered. The optimal array is also different for D20 and MLD, and depends on whether fixed observations are included that represent an idealized Argo array. Therefore, a relative frequency map of observation locations identified in 24 different OSSEs is compiled and a single, albeit less optimal, array that is referred to as a consolidated array is objectively determined. The consolidated array reflects the general features of the individual optimal arrays derived from all OSSEs. It is found that, in general, observations south of 8°S and off of the Indonesian coast are most important for resolving the interannual variability, while observations a few degrees south of the equator, and west of 75°E, and a few degrees north of the equator, and east of 75°E, are important for resolving the intraseasonal variability. In a series of OSSEs, the consolidated array is shown to outperform the proposed array for all configurations of the analysis system for both D20 and MLD.

Full access
Andreas Schiller, Gary Meyers, and Neville R. Smith

Abstract

No abstract available.

Full access
Andreas Schiller, Mike Herzfeld, Richard Brinkman, and Greg Stuart
Full access
Andreas Schiller, Fraser Davidson, Paul M. DiGiacomo, and Kirsten Wilmer-Becker
Full access
J. Stuart Godfrey, Rui-Jin Hu, Andreas Schiller, and R. Fiedler

Abstract

Annual mean net heat fluxes from ocean general circulation models (OGCMs) are systematically too low in the tropical Indian Ocean, compared to observations. In the models, only some of the geostrophic inflow replacing southward Ekman outflow is colder than the minimum sea surface temperature (MINSST). Observed heat fluxes imply that much more inflow is colder than MINSST. Since inflow below MINSST can only join the surface Ekman transport after diathermal warming, the OGCMs must underestimate diathermal effects.

A crude analog of the annual mean Indian Ocean heat budget was generated, using a rectangular box model with a deep “Indo–Pacific” gap at 7°–10°S in its eastern side. Wind stress was zonal and proportional to the Coriolis parameter, so Ekman transport was spatially constant and equaled Sverdrup transport. For three experiments, zonally integrated Ekman transport was steady and southward at 10 Sv (Sv ≡ 106 m3 s−1). In steady state, a 10 Sv “Indonesian Throughflow” fed a northward western boundary current of 10 Sv, which turned eastward along the northern boundary at 10°N to feed the southward Ekman transport. Most diathermal mixing occurred within an intense eddy in the northwest corner. Some of the geostrophic inflow was at temperatures colder than MINSST (found at the northeast corner of the eddy); it must warm to MINSST via diathermal mixing. Northern boundary upwelling exceeded the 10-Sv Ekman transport. The excess warms as it recirculates around the eddy, apparently supplying the heat to warm inflow below MINSST. In an experiment using the “flux-corrected transport” (FCT) scheme, diathermal mixing occurred in the strongly sheared currents around the eddy. However the Richardson number never became low enough to drive strong diathermal mixing, perhaps because (like that of other published models) the present model’s vertical resolution was too coarse. In three experiments, the dominant mixing was caused by horizontal diffusion, spurious convective overturn, and numerical mixing invoked by the FCT scheme, respectively. All three mixing mechanisms are physically suspect; such model problems (if widespread) must be resolved before the mismatch between observed and modeled heat fluxes can be addressed. However, the fact that the density profile at the western boundary must be hydrostatically stable places a lower limit on the area-integrated heat fluxes. Results from the three main experiments—and from many published OGCMs—are quite close to this lower limit.

Full access
Jaclyn N. Brown, J. Stuart Godfrey, and Andreas Schiller

Abstract

An eddy-permitting global ocean model is used to interpret kinematics within the central and eastern equatorial Pacific Ocean, from 160°E to the coast of America. Because of high levels of variability in this region, observational studies of meridional flow are contradictory, in particular as to whether the net flow is northward or southward. Unlike most oceanographic datasets, model output can be analyzed at high temporal and spatial resolution, providing clues as to real ocean behavior. In the model, a net southward flow occurs across the equator east of 160°W, at most density layers throughout the year. In the central Pacific, from 160°E to 160°W, the net flow is northward but varies with season and occurs primarily in the mixed layer. This is a key region for the flow of Equatorial Undercurrent water into the Northern Hemisphere. The three-dimensional flow is very complex and seasonally dependent. It is vital that these flows are analyzed in an isopycnal framework, or else the pathways are very misleading. In the first half of the year, evidence is found of meridional tropical cells on either side of the equator out to ±5°. These cells appear to exist without any need for diapycnal downwelling. In the second half of the year, when tropical instability waves are active, the cells are overlaid by a strong surface southward flow that appears to be a bolus-type transport. This transport is not apparent unless the flow is calculated in the aforementioned manner.

Full access
Scott B. Power, Andreas Schiller, Gillian Cambers, David Jones, and Kevin Hennessy

No abstract available.

Full access
Chaojiao Sun, Ming Feng, Richard J. Matear, Matthew A. Chamberlain, Peter Craig, Ken R. Ridgway, and Andreas Schiller

Abstract

Ocean boundary currents are poorly represented in existing coupled climate models, partly because of their insufficient resolution to resolve narrow jets. Therefore, there is limited confidence in the simulated response of boundary currents to climate change by climate models. To address this issue, the eddy-resolving Ocean Forecasting Australia Model (OFAM) was used, forced with bias-corrected output in the 2060s under the Special Report on Emissions Scenarios (SRES) A1B from the CSIRO Mark version 3.5 (Mk3.5) climate model, to provide downscaled regional ocean projections. CSIRO Mk3.5 captures a number of robust changes that are common to most climate models that are consistent with observed changes, including the weakening of the equatorial Pacific zonal wind stress and the strengthening of the wind stress curl in the Southern Pacific, important for driving the boundary currents around Australia.

The 1990s climate is downscaled using air–sea fluxes from the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40). The current speed, seasonality, and volume transports of the Australian boundary currents show much greater fidelity to the observations in the downscaled model. Between the 1990s and the 2060s, the downscaling with the OFAM simulates a 15% reduction in the Leeuwin Current (LC) transport, a 20% decrease in the Indonesian Throughflow (ITF) transport, a 12% increase in the East Australian Current (EAC) core transport, and a 35% increase in the EAC extension. The projected changes by the downscaling model are consistent with observed trends over the past several decades and with changes in wind-driven circulation derived from Sverdrup dynamics. Although the direction of change projected from downscaling is usually in agreement with CSIRO Mk3.5, there are important regional details and differences that will impact the response of ecosystems to climate change.

Full access