Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Andreas Stohl x
  • Refine by Access: All Content x
Clear All Modify Search
Andreas Stohl
and
Paul James

Abstract

Understanding and quantifying the relationships between evaporation of water in one region, precipitation in another, and the transport processes connecting them, is one of the key problems in hydrometeorology. However, to date few methods exist that are suitable for establishing these relationships. In this paper, a new Lagrangian technique is described that builds on methods that have been developed for investigating source–receptor relationships for air pollutants. It is based on meteorological analysis data and a particle dispersion model and uses a Lagrangian analog to the Eulerian budget method to diagnose the surface moisture flux. Because of its Lagrangian nature, regions of net evaporation are connected by trajectories with regions of net precipitation, and these trajectories can be used to examine how the two are related. The method is shown to yield estimates for the global distribution of the annual mean surface freshwater flux that are equally accurate as those obtained with the Eulerian budget method. It is then applied in a case study of an extreme precipitation event that occurred in central Europe in August 2002 and led to floodings with return periods of 100 to 300 yr in some river catchments. Again it is shown that the moisture fluxes obtained with the Lagrangian and Eulerian method, respectively, agree well with each other, and both agree well with observed precipitation patterns and short-range precipitation forecasts. Then the new method is used to determine where the water that became precipitation during the flooding event has evaporated. It is found that in addition to a strong Mediterranean source, much of the water evaporated from land. The strong extra evaporation over land was likely due to a wet spell the weeks before that left soils saturated with water in large parts of Europe and flooded in some smaller regions. It appears that precipitation forecasts suffered from predicting too little evaporation in these regions.

Full access
Harald Sodemann
and
Andreas Stohl

Abstract

During December 2006 many cyclones traveled across the North Atlantic, causing temperature and precipitation in Norway to be well above average. Large excursions of high vertically integrated water vapor, often referred to as atmospheric rivers, reached from the subtropics to high latitudes, inducing precipitation over western Scandinavia. The sources and transport of atmospheric water vapor in the North Atlantic storm track during that month are examined by means of a mesoscale model fitted with water vapor tracers. Decomposition of the modeled total water vapor field into numerical water vapor tracers tagged by evaporation latitude shows that when an atmospheric river was present, a higher fraction of water vapor from remote, southerly source regions caused more intense precipitation. The tracer transport analysis revealed that the atmospheric rivers were composed of a sequence of meridional excursions of water vapor, in close correspondence with the upper-level flow configuration. In cyclone cores, fast turnover of water vapor by evaporation and condensation were identified, leading to a rapid assimilation of water from the underlying ocean surface. In the regions of long-range transport, water vapor tracers from the southern midlatitudes and subtropics dominated over local contributions. By advection of water vapor along their trailing cold fronts cyclones were reinforcing the atmospheric rivers. At the same time the warm conveyor belt circulation was feeding off the atmospheric rivers by large-scale ascent and precipitation. Pronounced atmospheric rivers could persist in the domain throughout more than one cyclone's life cycle. These findings emphasize the interrelation between midlatitude cyclones and atmospheric rivers but also their distinction from the warm conveyor belt airstream.

Full access
Kathrin Baumann
and
Andreas Stohl

Abstract

In September 1995, 18 gas balloon teams competed at the Gordon Bennett Cup, a long-distance ballooning event. The landing positions, travel times of all teams, and detailed information on the tracks of four teams are available. A special version of the trajectory model FLEXTRA (flexible trajectories) is used that allows the heights of calculated trajectories to be adjusted to the respective balloon heights at every computation time step. The comparison of calculated and observed balloon trajectories allows a validation of the trajectory model. In this case study, the agreement between calculated and balloon trajectories was good, with average relative transport errors of less than 20% of the travel distance after 46 h of travel time. Most of the trajectory errors originate from interpolation errors and from amplifications of small position disturbances in divergent wind fields. Trajectory ensembles, taking into account stochastic errors occurring during the trajectory calculations, are shown to be very reliable in assessing the uncertainties of the computed trajectories. In the present study, the balloon tracks were enveloped by the ensemble trajectories most of the time, suggesting that errors in the analyzed wind fields were relatively small.

Full access
Andreas Stohl
and
Paul James

Abstract

A diagnostic Lagrangian method to trace the budgets of freshwater fluxes, first described in Part I of this article, is used here to establish source–sink relationships of moisture between earth’s ocean basins and river catchments. Using the Lagrangian particle dispersion model FLEXPART, driven with meteorological analyses, 1.1 million particles, representing the mass of the atmosphere, were tracked over a period of 4 yr. Via diagnosis of the changes of specific humidity along the trajectories, budgets of evaporation minus precipitation (EP) were determined. For validation purposes, EP budgets were calculated for 39 river catchments and compared with climatological streamflow data for these rivers. Good agreement (explained variance 87%) was found between the two quantities. The EP budgets were then tracked forward from all of earth’s ocean basins and backward from the 39 major river catchments for a period of 10 days. As much previous work was done for the Mississippi basin, this basin was chosen for a detailed analysis. Moisture recycling over the continent and moisture transport from the Gulf of Mexico were identified as the major sources for precipitation over the Mississippi basin, in quantitative agreement with previous studies. In the remainder of the paper, global statistics for source–sink relationships of moisture between the ocean basins and river catchments are presented. They show, for instance, the evaporative capacity of monsoonal flows for precipitation over the Ganges and Niger catchments, and the transport of moisture from both hemispheres to supply the Amazon’s precipitation. In contrast, precipitation in northern Eurasia draws its moisture mainly via recycling over the continent. The atmospheric transport of moisture between different ocean basins was also investigated. It was found that transport of air from the North Pacific produces net evaporation over the North Atlantic, but not vice versa. This helps to explain why the sea surface salinity is higher in the North Atlantic than in the North Pacific, a difference thought to be an important driver of the oceans’ thermohaline circulation. Finally, limitations of the method are discussed and possible future developments are outlined.

Full access
Caroline Forster
,
Andreas Stohl
, and
Petra Seibert

Abstract

This paper presents the revision and evaluation of the interface between the convective parameterization by Emanuel and Živković-Rothman and the Lagrangian particle dispersion model “FLEXPART” based on meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The convection scheme relies on the ECMWF grid-scale temperature and humidity and provides a matrix necessary for the vertical convective particle displacement. The benefits of the revised interface relative to its previous version are presented. It is shown that, apart from minor fluctuations caused by the stochastic convective redistribution of the particles, the well-mixed criterion is fulfilled in simulations that include convection. Although for technical reasons the calculation of the displacement matrix differs somewhat between the forward and the backward simulations in time, the mean relative difference between the convective mass fluxes in forward and backward simulations is below 3% and can therefore be tolerated. A comparison of the convective mass fluxes and precipitation rates with those archived in the 40-yr ECMWF Reanalysis (ERA-40) data reveals that the convection scheme in FLEXPART produces upward mass fluxes and precipitation rates that are generally smaller by about 25% than those from ERA-40. This result is interpreted as positive, because precipitation is known to be overestimated by the ECMWF model. Tracer transport simulations with and without convection are compared with surface and aircraft measurements from two tracer experiments and to 222Rn measurements from two aircraft campaigns. At the surface no substantial differences between the model runs with and without convection are found, but at higher altitudes the model runs with convection produced better agreement with the measurements in most of the cases and indifferent results in the others. However, for the tracer experiments only few measurements at higher altitudes are available, and for the aircraft campaigns the 222Rn emissions are highly uncertain. Other datasets better suitable for the validation of convective transport in models are not available. Thus, there is a clear need for reliable datasets suitable to validate vertical transport in models.

Full access
Andreas Stohl
,
Gerhard Wotawa
,
Petra Seibert
, and
Helga Kromp-Kolb

Abstract

This paper discusses some of the uncertainties that influence kinematic trajectory calculations. The interpolation errors due to different interpolation schemes are examined by degrading high-resolution wind fields from a numerical weather prediction model with respect to space and time. Under typical circumstances, the greatest errors are due to temporal interpolation, followed by horizontal and vertical interpolation. Relative errors in the vertical wind are higher than those in the horizontal wind components. These errors are quite substantial and severely affect the accuracy of trajectories. For instance, a decrease of the temporal resolution from 3 to 6 h leads to average relative interpolation errors of 16% in the horizontal wind components and 40% in the vertical wind component. These errors cause mean transport deviations of 280 km for two-dimensional model-level trajectories and 600 km for three-dimensional trajectories after 96-h travel time. The substantial deviations for three-dimensional trajectories are due to the large interpolation errors of the vertical velocity component. Although the three-dimensional trajectories are more sensitive to interpolation errors, for sufficiently (though not ideally) resolved wind fields they seem to be superior to model-level trajectories. An intercomparison of three-dimensional, model-level, isentropic, and boundary layer trajectories is presented.

Full access
Andreas Stohl
,
Kathrin Baumann
,
Gerhard Wotawa
,
Matthias Langer
,
Bruno Neininger
,
Martin Piringer
, and
Herbert Formayer

Abstract

This paper describes a simple method, based on routine meteorological data, to produce high-resolution wind analyses throughout the planetary boundary layer (PBL). It is a new way to interpolate wind measurements. According to this method, high-frequency information from surface wind measurements is extrapolated to greater heights by assuming that the vertical shear of the horizontal wind, that is, the differential vertical wind profile, is horizontally more homogeneous than the wind profile itself. Under this assumption, it is sufficient to combine high-resolution surface wind measurements with low-resolution vertical profiles of differential winds—for which high-resolution measurements usually do not exist—to yield high-resolution wind analyses throughout the PBL. The method can thus be viewed as a diagnostic downscaling of large-scale wind fields. Downscaling works best during daytime within a homogeneous air mass and in flat terrain. A validation against sodar wind measurements demonstrates that downscaling actually improves large-scale wind fields. A comparison of trajectories calculated from large-scale wind fields, from downscaled wind fields, and from wind fields produced by a conventional diagnostic wind field model, with daytime constant level balloon flights, again shows that the downscaled wind fields are most accurate.

Full access
Sabine Eckhardt
,
Andreas Stohl
,
Heini Wernli
,
Paul James
,
Caroline Forster
, and
Nicole Spichtinger

Abstract

This study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The climatology was constructed by using 15 yr (1979–93) of reanalysis data and calculating 355 million trajectories starting daily from a 1° × 1° global grid at 500 m above ground level (AGL). WCBs were defined as those trajectories that, during a period of 2 days, traveled northeastward and ascended by at least 60% of the zonally and climatologically averaged tropopause height. The mean specific humidity at WCB starting points in different regions varies from 7 to 12 g kg−1. This moisture is almost entirely precipitated out, leading to an increase of potential temperature of 15–22 K along a WCB trajectory. Over the course of 3 days, a WCB trajectory produces, on average, about four (six) times as much precipitation as a global (extratropical) average trajectory starting from 500 m AGL. WCB starting points are most frequently located between approximately 25° and 45°N and between about 20° and 45°S. In the Northern Hemisphere (NH), there are two distinct frequency maxima east of North America and east of Asia, whereas there is much less zonal variability in the Southern Hemisphere (SH). In the NH, WCBs are almost an order of magnitude more frequent in January than in July, whereas in the SH the seasonal variation is much weaker. In order to study the relationship between WCBs and cyclones, an independent cyclone climatology was used. Most of the WCBs were found in the vicinity of a cyclone center, whereas the reverse comparison revealed that cyclones are normally accompanied by a strong WCB only in the NH winter. In the SH, this is not the case throughout the year. Particularly around Antarctica, where cyclones are globally most frequent, practically no strong WCBs are found. These cyclones are less influenced by diabatic processes and, thus, they are associated with fewer high clouds and less precipitation than cyclones in other regions. In winter, there is a highly significant correlation between the North Atlantic Oscillation (NAO) and the WCB distribution in the North Atlantic: In months with a high NAO index, WCBs are about 12% more frequent and their outflow occurs about 10° latitude farther north and 20° longitude farther east than in months with a low NAO index. The differences in the WCB inflow regions are relatively small between the two NAO phases. During high phases of the Southern Oscillation, WCBs occur more (less) frequent around Australia (in the South Atlantic).

Full access
Jean-Daniel Paris
,
Philippe Ciais
,
Philippe Nédélec
,
Andreas Stohl
,
Boris D. Belan
,
Mikhail Yu. Arshinov
,
Claire Carouge
,
Georgii S. Golitsyn
, and
Igor G. Granberg

There are very few large-scale observations of the chemical composition of the Siberian airshed. The Airborne Extensive Regional Observations in Siberia (YAKAEROSIB) French–Russian research program aims to fill this gap by collecting repeated aircraft high-precision measurements of the vertical distribution of CO2, CO, O3, and aerosol size distribution in the Siberian troposphere on a transect of 4,000 km during campaigns lasting approximately one week. This manuscript gives an overview of the results from five campaigns executed in April 2006, September 2006, August 2007, and early and late July 2008. The dense set of CO2 vertical profiles, consisting of some 50 profiles in each campaign, is shown to constrain large-scale models of CO2 synoptic transport, in particular frontal transport processes. The observed seasonal cycle of CO2 in altitude reduces uncertainty on the seasonal covariance between vegetation fluxes and vertical mixing, known as the “seasonal rectifier effect.” Regarding carbon dioxide, we illustrate the potential of the YAKAEROSIB data to cross-validate a global CO2 transport model. When compared to the CO2 data, the model is likely to be biased toward too-weak mixing in winter, as it overestimates the CO2 vertical gradient compared to the observation. Regarding pollutants, we illustrate through case studies the occurence of CO enhancements of 30–50 ppb above background values, coincident with high O3. These high CO values correspond to large-scale transport of anthropogenic emissions from Europe, and to wildfires in the Caspian Sea area, over much cleaner Arctic air (September 2006). An occurence of extremely high CO values above 5,000 km in eastern Siberia is found to be related to the very fast transport and uplift of Chinese anthropogenic emissions caused by a cold front (April 2006).

Full access
Andreas Stohl
,
Heini Wernli
,
Paul James
,
Michel Bourqui
,
Caroline Forster
,
Mark A. Liniger
,
Petra Seibert
, and
Michael Sprenger

Stratosphere–troposphere exchange (STE) is important for the chemical composition of both the stratosphere and troposphere. Modifications of STE in a changing climate may affect stratospheric ozone depletion and the oxidizing capacity of the troposphere significantly. However, STE is still poorly understood and inadequately quantified, due to the involvement of physical and dynamical processes on local to global scales and to conceptual problems. In this study, a presentday global climatology of STE is developed that is based, from a data standpoint, on 15 yr of global meteorological reanalyses, and, from a conceptual standpoint, on a Lagrangian perspective that considers the pathways of exchange air parcels and their residence times in the troposphere and lowermost stratosphere. To this end, two complementary Lagrangian models are used. Particular consideration is given to “deep” exchange events that, through fast ascent of tropospheric or fast descent of stratospheric air masses, bring into contact air from the (potentially polluted) boundary layer and lower stratosphere. It is shown that they have different characteristics (strongly preferred geographical locations and a pronounced seasonal cycle) from that of the full set of exchange events. This result is important for accurately characterizing the effects of STE. In particular, it can be inferred that the well-documented springtime maximum of surface ozone cannot be explained primarily by STE.

Full access