Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Andrew Dowdy x
  • All content x
Clear All Modify Search
Andrew J. Dowdy

Abstract

Long-term variations in fire weather conditions are examined throughout Australia from gridded daily data from 1950 to 2016. The McArthur forest fire danger index is used to represent fire weather conditions throughout this 67-yr period, calculated on the basis of a gridded analysis of observations over this time period. This is a complementary approach to previous studies (e.g., those based primarily on model output, reanalysis, or individual station locations), providing a spatially continuous and long-term observations-based dataset to expand on previous research and produce climatological guidance information for planning agencies. Long-term changes in fire weather conditions are apparent in many regions. In particular, there is a clear trend toward more dangerous conditions during spring and summer in southern Australia, including increased frequency and magnitude of extremes, as well as indicating an earlier start to the fire season. Changes in fire weather conditions are attributable at least in part to anthropogenic climate change, including in relation to increasing temperatures. The influence of El Niño–Southern Oscillation (ENSO) on fire weather conditions is found to be broadly consistent with previous studies (indicating more severe fire weather in general for El Niño conditions than for La Niña conditions), but it is demonstrated that this relationship is highly variable (depending on season and region) and that there is considerable potential in almost all regions of Australia for long-range prediction of fire weather (e.g., multiweek and seasonal forecasting). It is intended that improved understanding of the climatological variability of fire weather conditions will help lead to better preparedness for risks associated with dangerous wildfires in Australia.

Full access
Acacia Pepler and Andrew Dowdy

Abstract

Cyclones can be identified from gridded pressure data at different levels of the troposphere, with vertical structure known to influence the temporal development and impacts of midlatitude cyclones. However, studies of midlatitude cyclones typically focus on cyclones identified at a single atmospheric level. This paper examines how the frequency of vertically organized or deep cyclones varies around the world, with a focus on southeastern Australia. About 50% of global cyclones identified from mean sea level pressure show a coherent vertical structure extending to at least 500 hPa, based on ERA-Interim reanalysis data, and shallow cyclones are most common in the global midlatitudes. Using a combination of reanalysis data and satellite-based rainfall and lightning, we show that in southeast Australia deep cyclones have higher intensities, longer durations, and more severe winds and rainfall than either shallow surface cyclones or upper-level cyclones with no surface low, motivating a three-dimensional approach for future cyclone analyses.

Open access
Leone Cavicchia, Andrew Dowdy, and Kevin Walsh

Abstract

The subtropical east coast region of Australia is characterized by the frequent occurrence of low pressure systems, known as east coast lows (ECLs). The more intense ECLs can cause severe damage and disruptions to this region. While the term “east coast low” refers to a broad classification of events, it has been argued that different ECLs can have substantial differences in their nature, being dominated by baroclinic and barotropic processes in different degrees. Here we reexamine two well-known historical ECL case studies under this perspective: the Duck storm of March 2001 and the Pasha Bulker storm of June 2007. Exploiting the cyclone phase space analysis to study the storms’ full three-dimensional structure, we show that one storm has features similar to a typical extratropical frontal cyclone, while the other has hybrid tropical–extratropical characteristics. Furthermore, we examine the energetics of the atmosphere in a limited area including both systems for the ECL occurrence times, and show that the two cyclones are associated with different signatures in the energy conversion terms. We argue that the systematic use of the phase space and energetics diagnostics can form the basis for a physically based classification of ECLs, which is important to advance the understanding of ECL risk in a changing climate.

Full access
Andrew J. Dowdy and Graham A. Mills

Abstract

A systematic examination is presented of the relationship between lightning occurrence and fires attributed to lightning ignitions. Lightning occurrence data are matched to a database of fires attributed to lightning ignition over southeastern Australia and are compared with atmospheric and fuel characteristics at the time of the lightning occurrence. Factors influencing the chance of fire per lightning stroke are examined, including the influence of fuel moisture and weather parameters, as well as seasonal and diurnal variations. The fuel moisture parameters of the Canadian Fire Weather Index System are found to be useful in indicating whether a fire will occur, given the occurrence of lightning. The occurrence of “dry lightning” (i.e., lightning that occurs without significant rainfall) is found to have a large influence on the chance of fire per lightning stroke. Through comparison of the results presented here with the results of studies from other parts of the world, a considerable degree of universality is shown to exist in the characteristics of lightning fires and the atmospheric conditions associated with them, suggesting the potential for these results to be applied more widely than just in the area of the study.

Full access
Nicholas McCarthy, Hamish McGowan, Adrien Guyot, and Andrew Dowdy

Abstract

The process of pyroconvection occurs when fire-released heat, moisture, and/or aerosols induce or augment convection in the atmosphere. Prediction of pyroconvection presents a set of complex problems for meteorologists and wildfire managers. In particular, the turbulent characteristics of a pyroconvective plume exert bidirectional feedback on fire behavior, often with resulting severe impacts on life and property. Here, we present the motivation, field strategy, and initial results from the Bushfire Convective Plume Experiment, which through the use of mobile radar aims to quantify the kinematics of pyroconvection and its role in fire behavior. The case studies presented include world-first observations from two wildfires and one prescribed burn using the University of Queensland’s portable, dual-polarized X-band Doppler radar (UQ-XPOL). The initial analyses of reflectivity, Doppler winds, polarimetric variables, and spectrum width data provide insights into these relatively unexplored datasets within the context of pyroconvection. Weather radar data are supported by mesonet observations, time-lapse photography, airborne multispectral imaging, and spot-fire mapping. The ability to combine ground-validated fire intensity and progression at an hourly scale with quantitative data documenting the evolution of the convective plume kinematics at the scale of hundreds of meters represents a new capability for advancing our understanding of wildfires. The results demonstrate the suitability of portable, dual-polarized X-band Doppler radar to investigate pyroconvection and associated plume dynamics.

Open access
Bryson C. Bates, Andrew J. Dowdy, and Richard E. Chandler

Abstract

Lightning accompanied by inconsequential rainfall (i.e., “dry” lightning) is the primary natural ignition source for wildfires globally. This paper presents a machine-learning and statistical-classification analysis of dry and “wet” thunderstorm days in relation to associated atmospheric conditions. The study is based on daily data for lightning-flash count and precipitation from ground-based sensors and gauges and a comprehensive set of atmospheric variables that are based on ERA-Interim for the period from 2004 to 2013 at six locations in Australia. These locations represent a wide range of climatic zones (temperate, subtropical, and tropical). Quadratic surface representations and low-dimensional summary statistics were used to characterize the main features of the atmospheric fields. Four prediction skill scores were considered, and 10-fold cross validation was used to evaluate the performance of each classifier. The results were compared with those obtained by adopting the approach used in an earlier study for the U.S. Pacific Northwest. It was found that both approaches have prediction skill when tested against independent data, that mean atmospheric field quantities proved to be the most influential variables in determining dry-lightning activity, and that no single classifier or set of atmospheric variables proved to be consistently superior to its counterpart for the six sites examined here.

Full access
Leone Cavicchia, Acacia Pepler, Andrew Dowdy, and Kevin Walsh

Abstract

The subtropical part of the eastern Australian seaboard experiences intense cyclonic activity. The severe damage caused by the intense storms in the region, known as east coast lows (ECLs), has motivated a number of recent studies. Cyclones in this region appear to be driven by a combination of different (barotropic and baroclinic) formation mechanisms, consistent with the view emerging in the last decades that cyclones span a continuous spectrum of dynamical structures, with the barotropically driven tropical cyclone and the baroclinically driven extratropical cyclone being only the extremes of such a spectrum. In this work we revisit the climatology of cyclone occurrence in the subtropical east coast of Australia as seen in a global reanalysis, systematically applying classification criteria based on the cyclone vertical structure and thermal core. Moreover, we investigate the underlying processes driving the cyclone rapid intensification by means of an atmospheric limited-area energetics analysis. We show that ECLs have different spatial patterns according to the cyclone thermal structure, with the fraction of hybrid cyclones being larger toward the tropics and closer to the coast. Moreover, we find that explosively deepening cyclones in this region are driven by a different combination of processes with respect to the global case, with barotropic processes in the surrounding environment having a more dominant role in the energetics of cyclone rapid intensification. The findings of this work contribute to understanding the physical processes underlying the formation and intensification of Australian east coast lows and the associated coastal damage and risk.

Full access
Bryson C. Bates, Andrew J. Dowdy, and Richard E. Chandler

Abstract

Lightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning classification techniques to distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current general circulation models and reanalyses. The classification techniques considered were 1) a combination of principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests, 4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found that logistic regression was superior to the other classifiers considered and that its prediction skill is much better than using climatological values. The sets of atmospheric variables included in the final logistic-regression models were primarily composed of spatial mean measures of instability and lifting potential, along with atmospheric water content. The memberships of these sets varied among climatic zones.

Full access
Andrew J. Dowdy, Graham A. Mills, Bertrand Timbal, and Yang Wang

Abstract

The east coast of Australia is a region of the world where a particular type of extratropical cyclone, known locally as an east coast low, frequently occurs with severe consequences such as extreme rainfall, winds, and waves. The likelihood of formation of these storms is examined using an upper-tropospheric diagnostic applied to three reanalyses and three global climate models (GCMs). Strong similarities exist among the results derived from the individual reanalyses in terms of their seasonal variability (e.g., winter maxima and summer minima) and interannual variability. Results from reanalyses indicate that the threshold value used in the diagnostic method is dependent on the spatial resolution. Results obtained when applying the diagnostic to two of the three GCMs are similar to expectations given their spatial resolutions, and produce seasonal cycles similar to those from the reanalyses. Applying the methodology to simulations from these two GCMs for both current and future climate in response to increases in greenhouse gases indicates a reduction in extratropical cyclone occurrence of about 30% from the late twentieth century to the late twenty-first century for eastern Australia. In addition to the absolute risk of formation of these extratropical cyclones, spatial climatologies of occurrence are examined for the broader region surrounding eastern Australia. The influence of large-scale modes of atmospheric and oceanic variability on the occurrence of these storms in this region is also discussed.

Full access
Andrew J. Dowdy, Lixin Qi, David Jones, Hamish Ramsay, Robert Fawcett, and Yuri Kuleshov

Abstract

Climatological features of tropical cyclones in the South Pacific Ocean have been analyzed based on a new archive for the Southern Hemisphere. A vortex tracking and statistics package is used to examine features such as climatological maps of system intensity and the change in intensity with time, average tropical cyclone system movement, and system density. An examination is presented of the spatial variability of these features, as well as changes in relation to phase changes of the El Niño–Southern Oscillation phenomenon. A critical line is defined in this study based on maps of cyclone intensity to describe the statistical geographic boundary for cyclone intensification. During El Niño events, the critical line shifts equatorward, while during La Niña events the critical line is generally displaced poleward. Regional variability in tropical cyclone activity associated with El Niño–Southern Oscillation phases is examined in relation to the variability of large-scale atmospheric or oceanic variables associated with tropical cyclone activity. Maps of the difference fields between different phases of El Niño–Southern Oscillation are examined for sea surface temperature, vertical wind shear, lower-tropospheric vorticity, and midtropospheric relative humidity. Results are also examined in relation to the South Pacific convergence zone. The common region where each of the large-scale variables showed favorable conditions for cyclogenesis coincided with the location of maximum observed cyclogenesis for El Niño events as well as for La Niña years.

Full access