Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: Andrew L. Pazmany x
  • Refine by Access: All Content x
Clear All Modify Search
James B. Mead
and
Andrew L. Pazmany

Abstract

Quadratically varying phase codes applied from pulse to pulse can be used to impart a range-dependent frequency shift in the decoded signal of a pulsed radar. Radars employing such codes can operate at extremely high pulse repetition frequencies (PRFs) with overlaid signals from multiple echo trips separated in the spectral domain. When operating at high PRFs, the radar duty cycle can approach 50% in a single-antenna system. High duty cycle operation results in a substantial increase in average transmit power with a proportional increase in signal processing gain as compared to a conventional pulsed radar. The shortest quadratic phase code, or base code, has a length equal to the number of echo trips M that can be unambiguously resolved in the spectral domain. The decoded waveform is essentially free from range sidelobes under ideal conditions. However, amplitude and phase errors associated with nonideal phase coding result in range sidelobes that appear at all echo trips in the decoded signal. These sidelobes can be suppressed by using a composite phase code composed of a periodically repeating base phase code added to a much longer quadratic code with a proportionally slower phase variation. Meteorological data gathered with a Ka-band radar operating at 3.0-MHz PRF at 45% duty cycle are presented. A comparison of these data with data gathered in short-pulse mode at a duty cycle of 0.3% exhibited a 21-dB improvement in the Doppler spectrum signal-to-noise ratio, equal to the ratio of the respective duty cycles.

Open access
Howard B. Bluestein
and
Andrew L. Pazmany

In the spring of 1999 a field experiment was conducted in the Southern Plains of the United States, during which a mobile, millimeter-wavelength pulsed Doppler radar from the University of Massachusetts, Amherst, was used by a storm-intercept team from the University of Oklahoma to collect data in tornadoes and developing tornadoes. With a 0.18° beam antenna, resolution as high as 5–10 m in the azimuthal direction was attained in a tornado on 3 May. Data collected in three supercell tornadoes are described. Features such as eyes, spiral bands, and multiple vortices/wavelike asymmetries along the edge of the eyewall are discussed. Winds approaching 80 m s−1 were resolved without folding using the polarization diversity pulse pair technique. Two tornadoes formed at an inflection point in reflectivity where the hook echo and apparent rear-flank downdraft intersected. Finescale transverse bands of reflectivity were evident in one hook echo. Data in a dust devil are also described. Numerous other datasets collected in mesocyclones are also noted. A plan for future data analysis is suggested and a plan for future experiments and upgrades to the radar are proposed.

Full access
Andrew L. Pazmany
and
Samuel J. Haimov

Abstract

Coherent power is an alternative to the conventional noise-subtracted power technique for measuring weather radar signal power. The inherent noise-canceling feature of coherent power eliminates the need for estimating and subtracting the noise component, which is required when performing conventional signal power estimation at low signal-to-noise ratio. The coherent power technique is particularly useful when averaging a high number of samples to improve sensitivity to weak signals. In such cases, the signal power is small compared to the noise power and the required accuracy of the estimated noise power may be difficult to achieve. This paper compares conventional signal power estimation with the coherent power measurement technique by investigating bias, standard deviation, and probability of false alarm and detection rates as a function of signal-to-noise ratio and threshold level. This comparison is performed using analytical expressions, numerical simulations, and analysis of cloud and precipitation data collected with the airborne solid-state Ka-band precipitation radar (KPR) operated by the University of Wyoming.

Full access
Howard B. Bluestein
,
Christopher C. Weiss
, and
Andrew L. Pazmany

Abstract

This two-part paper details an analysis of high-resolution wind and reflectivity data collected by a mobile, W-band Doppler radar: The dataset captures the near-surface life history of a tornado in a supercell in north-central Nebraska on 5 June 1999. The formation of the tornado vortex near the ground is described from a sequence of sector scans ranging from 30-s intervals prior to tornadogenesis to 10–15-s intervals during much of the lifetime of the tornado.

Cyclonic vortices of 100–200 m width were found along a bow-shaped line of enhanced radar reflectivity, at what appears to have been the leading edge of a rear-flank gust front. At the time of tornadogenesis, one of these vortices was located just ahead of the nose of the bow-shaped radar echo and a jet, which were embedded within a larger-scale cyclone. At other times, small-scale cyclonic vortices coexisted with the tornado along an arc-shaped line extending to its north and northeast but did not appear to interact with the tornado. The evolution of all vortices and their associated reflectivity signatures was on a timescale shorter than 30 s, indicating that during tornadogenesis the flow pattern was highly unsteady. Mechanisms by which a smaller-scale vortex or vortices and a bow-shaped echo may have played a role in tornadogenesis are suggested. The structure of the tornado vortex near the ground, as a function of time, is discussed in Part II.

Full access
Howard B. Bluestein
,
Christopher C. Weiss
, and
Andrew L. Pazmany

Abstract

Analyses of a dust-devil dataset collected in northwest Texas are presented. The data were collected just above the ground at close range with a mobile, W-band (3-mm wavelength) Doppler radar having an azimuthal (radial) resolution of 3–5 m (30 m) at the range of the dust devils. Most dust devils appeared as quasi-circular rings of relatively high radar reflectivity. Four dust-devil vortices were probed, three of which were cyclonic and one anticyclonic. Documentation was obtained of a pair of adjacent cyclonic vortices rotating cyclonically around each other.

Approximate radial profiles of azimuthal and radial wind components and of radar reflectivity are detailed and discussed. The diameters of the core of the dust devils ranged from 30 to 130 m; the latter diameters are much wider than that of typical dust devils in a homogeneous environment. The widest vortex was cyclonic and exhibited evidence of a two-cell structure (i.e., sinking motion near the center and rising motion just outside the radius of maximum wind), a broad, calm eye, and an annulus of maximum vorticity just inside the radius of maximum wind. As the vortex widened, it developed an asymmetry, and some evidence was found that two waves propagated cyclonically around it. The narrowest dust devil had the structure of a Rankine combined vortex, that is, a central core of constant vorticity surrounded by potential flow. Owing to very strong radial shear of the azimuthal wind, the vorticity in the dust-devil cores ranged from 0.5 to 1 s−1, which is as high as the vorticity in some tornadoes. However, the maximum ground-relative wind speeds in each dust devil were only 6.5–13.5 m s−1. The location of the highest radar reflectivity was located at or within the radius of maximum wind. In the widest dust devil, the vorticity estimated from the Doppler shear associated with its vortex signature was much less than the smaller-scale vorticity ring estimated from the azimuthal wind profile. It is therefore suggested that the vorticity estimated from the Doppler shear in tornadoes may be underestimated significantly when the tornado vortex exhibits a two-cell structure and that Doppler shear alone may not be a good indicator of vortex intensity.

Full access
Christopher C. Weiss
,
Howard B. Bluestein
, and
Andrew L. Pazmany

Abstract

The dryline has long been associated with the development of severe thunderstorms in the southern plains during the spring and early summer months. The propagation and structure of the dryline are closely tied to surface processes that are neither well understood nor well resolved with current observational capabilities. As a result, there are often large errors in forecasts of dryline position and structure.

Improvements in radar technology have allowed for better observations of the dryline in recent years. Here, very finescale radar observations taken with the University of Massachusetts—Amherst (UMass) mobile W-band radar during an International H2O Project (IHOP) double-dryline event on 22 May 2002 in the Oklahoma panhandle are presented. The observations are placed in the context of the dryline secondary circulation, which describes flow in a plane normal to the dryline. The narrow, half-power beamwidth of the antenna on the W band (0.18°) permitted the measurements of channels of upward (8–9 m s−1 over a horizontal distance of 50–100 m) and downward vertical velocity, greater in absolute magnitude than that previously reported in dryline field studies.

A ground-based variational pseudo-multiple-Doppler processing technique is introduced, which is used to decompose time series of RHI velocity data into horizontal and vertical wind components. The technique is applied to a retrograding dryline from 22 May 2002. Finescale structure of the retreating dryline interface is presented.

Full access
Howard B. Bluestein
,
Christopher C. Weiss
, and
Andrew L. Pazmany

Abstract

A mobile, W-band Doppler radar scanned, at close range, portions of a tornado near Happy, Texas, on 5 May 2002. Simultaneous boresighted video images were also recorded, which facilitated correlating the radar-observed features of the tornado with its visual features. Range–height indicators (RHIs) of radar reflectivity and Doppler velocity were collected that detail, with high spatial resolution, aspects of the vertical structure of the tornado near the ground.

Most of the RHIs showed a column of a weak-echo hole from about 60 m above the ground up to the top of the domain at 800–1000 m above the ground; the hole was roughly 40% broader about 100 m above the ground as it was above, resulting in a characteristic pear-shaped vertical cross section of reflectivity. In this tornado, the condensation funnel was much narrower than the width of the weak-echo hole; the visible debris cloud near the ground was approximately just as wide as the hole above 150 m. The mean depth of the debris cloud was around 200 m. The vertical structure of the Doppler-velocity field exhibited a narrow band of high wind speeds about 200–400 m above the ground, consistent with airflow inward toward and cyclonically about the tornado. Possible reasons for the observed structure of the tornado are offered.

Full access
Andrew L. Pazmany
,
James B. Mead
,
Howard B. Bluestein
,
Jeffrey C. Snyder
, and
Jana B. Houser

Abstract

A novel, rapid-scanning, X-band (3-cm wavelength), polarimetric (RaXPol), mobile radar was developed for severe-weather research. The radar employs a 2.4-m-diameter dual-polarized parabolic dish antenna on a high-speed pedestal capable of rotating the antenna at 180° s−1. The radar can complete a 10-elevation-step volume scan in about 20 s, while maintaining a 180-record-per-second data rate. The transmitter employs a 20-kW peak-power traveling wave tube amplifier that can generate pulse compression and frequency-hopping waveforms. Frequency hopping permits the acquisition of many more independent samples possible than without frequency hopping, making it possible to scan much more rapidly than conventional radars. Standard data products include vertically and horizontally polarized equivalent radar reflectivity factor, Doppler velocity mean and standard deviation, copolar cross-correlation coefficient, and differential phase. This paper describes the radar system and illustrates the capabilities of the radar through selected analyses of data collected in the U.S. central plains during the 2011 spring tornado season. Also noted are opportunities for experimenting with different signal-processing techniques to reduce beam smearing, increase sensitivity, and improve range resolution.

Full access
Christopher C. Weiss
,
Howard B. Bluestein
,
Andrew L. Pazmany
, and
Bart Geerts

Abstract

A case study of a double dryline on 22 May 2002 is presented. Mobile, 3-mm-wavelength Doppler radars from the University of Massachusetts and the University of Wyoming (Wyoming cloud radar) were used to collect very fine resolution vertical-velocity data in the vicinity of each of the moisture gradients associated with the drylines. Very narrow (50–100 m wide) channels of strong upward vertical velocity (up to 8 m s–1) were measured in the convergence zone of the easternmost dryline, larger in magnitude than reported with previous drylines. Distinct areas of descending motion were evident to the east and west of both drylines. Radar data are interpreted in the context of other observational platforms available during the International H2O Project (IHOP-2002). a variational ground-based mobile radar data processing technique was developed and applied to pseudo-dual-Doppler data collected during a rolling range-height indicator deployment. It was found that there was a secondary (vertical) circulation normal to the easternmost moisture gradient; the circulation comprised an easterly component near-surface flow to the east, a strong upward vertical component in the convergence zone, a westerly return, flow above the convective boundary layer, and numerous regions of descending motion, the most prominent approximately 3–5 km to the east of the surface convergence zone.

Full access
Howard B. Bluestein
,
Andrew L. Pazmany
,
John C. Galloway
, and
Robert E. McIntosh

An experiment whose objective was to determine the wind and reflectivity substructure of severe convective storms is detailed. A 3-mm-wavelength (95 GHz) pulsed Doppler radar was installed in a van and operated in the Southern Plains of the United States during May and early June of 1993 and 1994. Using a narrow-beam antenna with computer-controlled scanning and positioning the van several kilometers from targets in severe thunderstorms, the authors were able to achieve 30-m spatial resolution and also obtain video documentation. A dual-polarization pulse-pair technique was used to realize a maximum unambiguous velocity of ±80 m s−1. Analyses of data collected in a mesocyclone near the intersection of two squall lines, in a low-precipitation storm, and in a hook echo in a supercell are discussed. A strategy to achieve 10-m spatial resolution and obtain analyses of the internal structure of tornadoes is proposed.

Full access