Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Andrew M. Chiodi x
  • All content x
Clear All Modify Search
Andrew M. Chiodi

Abstract

Accurate real-time knowledge of equatorial Pacific wind stress is critical for monitoring the state of the tropical Pacific Ocean and understanding sea surface temperature anomaly (SSTA) development associated with El Niño–Southern Oscillation (ENSO) events. The tropical Pacific moored-buoy array has been shown to adequately provide this knowledge when operating as designed. Ocean model simulation of equatorial Pacific SSTA by moored-buoy winds reveals that recent western Pacific buoy losses exceed the array’s minimal redundancy. Additional wind measurements are needed to adequately simulate ENSO-related SSTA development when large portions of the moored-buoy array have been lost or decommissioned. Prospects for obtaining this supplemental wind information in real time are evaluated from simulations of central equatorial Pacific SSTA development during 2017 and end-of-year Niño-3.4 conditions during the previous 25 years. Results show that filling multiple-buoy-dropout gaps with winds from a pair of scatterometers (2000–17) achieves simulation accuracy improving upon that available from the moored-buoy array in the case in which large portions of the array are out. Forcing with the reanalysis-product winds most commonly used in recent ENSO studies or the scatterometer measurements (without the buoy winds) degrades simulation accuracy. The utility of having accurate basinwide wind stress information is demonstrated in an examination of the role that easterly weather-scale wind events played in driving the unexpected development of La Niña in 2017 and by showing that wintertime Niño-3.4 conditions can be statistically forecast, with skill comparable to state-of-the-art coupled models, on the basis of accurate knowledge of equatorial Pacific wind variability over spring or summer.

Open access
D. E. Harrison and Andrew M. Chiodi

Abstract

El Niño and La Niña seasonal weather anomaly associations provide a useful basis for winter forecasting over the North American regions where they are sufficiently strong in amplitude and consistent in character from one event to another. When the associations during La Niña are different than El Niño, however, the obvious quasi-linear-statistical approach to modeling them has serious shortcomings. The linear approach of L’Heureux et al. is critiqued here based on observed land surface temperature and tropospheric circulation associations over North America. The La Niña associations are quite different in pattern from their El Niño counterparts. The El Niño associations dominate the statistics. This causes the linear approach to produce results that are inconsistent with the observed La Niña–averaged associations. Further, nearly all the useful North American associations have been contributed by the subset of El Niño and La Niña years that are identifiable by an outgoing longwave radiation (OLR) El Niño index and a distinct OLR La Niña index. The remaining “non-OLR events” exhibit winter weather anomalies with large event-to-event variability and contribute very little statistical utility to the composites. The result is that the linear analysis framework is sufficiently unable to fit the observations as to question its utility for studying La Niña and El Niño seasonal temperature and atmospheric circulation relationships. An OLR-event based approach that treats La Niña and El Niño separately is significantly more consistent with, and offers an improved statistical model for, the observed relationships.

Full access
Andrew M. Chiodi and D. E. Harrison

Abstract

The unexpected halt of warm sea surface temperature anomaly (SSTA) growth in 2014 and development of a major El Niño in 2015 has drawn attention to our ability to understand and predict El Niño development. Wind stress–forced ocean model studies have satisfactorily reproduced observed equatorial Pacific SSTAs during periods when data return from the TAO/TRITON buoy network was high. Unfortunately, TAO/TRITON data return in 2014 was poor. To study 2014 SSTA development, the observed wind gaps must be filled. The hypothesis that subseasonal wind events provided the dominant driver of observed waveguide SSTA development in 2014 and 2015 is used along with the available buoy winds to construct an oceanic waveguide-wide surface stress field of westerly wind events (WWEs) and easterly wind surges (EWSs). It is found that the observed Niño-3.4 SSTA development in 2014 and 2015 can thereby be reproduced satisfactorily. Previous 2014 studies used other wind fields and reached differing conclusions about the importance of WWEs and EWSs. Experiment results herein help explain these inconsistencies, and clarify the relative importance of WWEs and EWSs. It is found that the springtime surplus of WWEs and summertime balance between WWEs and EWSs (yielding small net wind stress anomaly) accounts for the early development and midyear reversal of El Niño–like SSTA development in 2014. A strong abundance of WWEs in 2015 accounts for the rapid SSTA warming observed then. Accurately forecasting equatorial Pacific SSTA in years like 2014 and 2015 may require learning to predict WWE and EWS occurrence characteristics.

Full access
Andrew M. Chiodi and D. E. Harrison

Abstract

El Niño–Southern Oscillation (ENSO) events are associated with particular seasonal weather anomalies in many regions around the planet. When the statistical links are sufficiently strong, ENSO state information can provide useful seasonal forecasts with varying lead times. However, using conventional sea surface temperature or sea level pressure indices to characterize ENSO state leads to many instances of limited forecast skill (e.g., years identified as El Niño or La Niña with weather anomalies unlike the average), even in regions where there is considerable ENSO-associated anomaly, on average. Using outgoing longwave radiation (OLR) conditions to characterize ENSO state identifies a subset of the conventional ENSO years, called OLR El Niño and OLR La Niña years herein. Treating the OLR-identified subset of years differently can both usefully strengthen the level of statistical significance in the average (composite) and also greatly reduce the year-to-year deviations in the composite precipitation anomalies. On average, over most of the planet, the non-OLR El Niño and non-OLR La Niña years have much more limited statistical utility for precipitation. The OLR El Niño and OLR La Niña indices typically identify years in time to be of use to boreal wintertime and later seasonal forecasting efforts, meaning that paying attention to tropical Pacific OLR conditions may offer more than just a diagnostic tool. Understanding better how large-scale environmental conditions during ENSO events determine OLR behavior (and deep atmospheric convection) will lead to improved seasonal precipitation forecasts for many areas.

Full access
Andrew M. Chiodi and D. E. Harrison

Abstract

The fundamental importance of near-equatorial zonal wind stress in the evolution of the tropical Pacific Ocean’s seasonal cycle and El Niño–Southern Oscillation (ENSO) events is well known. It has been two decades since the TAO/TRITON buoy array was deployed, in part to provide accurate surface wind observations across the Pacific waveguide. It is timely to revisit the impact of TAO/TRITON winds on our ability to simulate and thereby understand the evolution of sea surface temperature (SST) in this region. This work shows that forced ocean model simulations of SST anomalies (SSTAs) during the periods with a reasonably high buoy data return rate can reproduce the major elements of SSTA variability during ENSO events using a wind stress field computed from TAO/TRITON observations only. This demonstrates that the buoy array usefully fulfills its waveguide-wind-measurement purpose. Comparison of several reanalysis wind fields commonly used in recent ENSO studies with the TAO/TRITON observations reveals substantial biases in the reanalyses that cause substantial errors in the variability and trends of the reanalysis-forced SST simulations. In particular, the negative trend in ERA-Interim is much larger and the NCEP–NCAR Reanalysis-1 and NCEP–DOE Reanalysis-2 variability much less than seen in the TAO/TRITON wind observations. There are also mean biases. Thus, even with the TAO/TRITON observations available for assimilation into these wind products, there remain oceanically important differences. The reanalyses would be much more useful for ENSO and tropical Pacific climate change study if they would more effectively assimilate the TAO/TRITON observations.

Full access
Andrew M. Chiodi and D. E. Harrison

Abstract

The tropical Pacific moored-buoy array spacing was based on wind coherence scales observed from low-lying islands in the western-central tropical Pacific. Since the array was deployed across the full basin in the mid-1990s, winds from the array have proven critical to accurately monitoring for decadal-scale changes in tropical Pacific winds and identifying spurious trends in wind analysis products used to monitor for long-term change. The array observations have also greatly advanced our ability to diagnostically model (hindcast) and thereby better understand the observed development of central Pacific sea surface temperature anomaly development associated with El Niño and La Niña events, although the eastern equatorial Pacific is not yet accurately hindcast. The original array-design assumptions that the statistics calculated from the western-central Pacific island records are representative of open-ocean conditions and other regions of the tropical Pacific have not been thoroughly reexamined. We revisit these assumptions using the basinwide wind observations provided by the array and find that key wind statistics change across the tropical Pacific basin in ways that could not be determined from the original island wind study. The island results provided a best-case answer for mooring zonal spacing with minimally redundant coherence between adjacent buoys. Buoy-observed meridional coherence scales are longer than determined from the islands. Enhanced zonal sampling east of 140°W and west of 180° is needed to obtain minimal redundancy (optimal spacing). Reduced meridional sampling could still yield minimal redundancy for wind and wind stress fields over the ocean waveguide.

Open access
Andrew M. Chiodi and Don E. Harrison

Abstract

This study shows that, since 1979 when outgoing longwave radiation (OLR) observations became reliably available, most of the useful U.S. seasonal weather impact of El Niño events is associated with the few events identified by the behavior of outgoing longwave radiation (OLR) over the eastern equatorial Pacific (“OLR–El Niño events”). These events produce composite seasonal regional weather anomalies that are 95% statistically significant and robust (associated with almost all events). Results also show that there are very few statistically significant seasonal weather anomalies, even at the 80% level, associated with the non-OLR–El Niño events. A major enhancement of statistical seasonal forecasting skill over the contiguous United States appears possible by incorporating these results. It is essential to respect that not all events commonly labeled as El Niño events lead to statistically useful U.S. seasonal forecast skill.

Full access
Andrew M. Chiodi and D. E. Harrison

Abstract

The processes responsible for the onset of La Niña events have not received the same attention as those responsible for the onset of El Niño events, for which westerly wind events (WWEs) in the tropical Pacific have been identified as important contributors. Results here show that synoptic-scale surface easterly wind surges (EWSs) play an important role in the onset of La Niña events, akin to the role of WWEs in the onset of El Niño events. It is found that EWSs are a substantial component of zonal wind stress variance along the equatorial Pacific. Using reanalysis wind stress fields, validated against buoy measurements, 340 EWS events are identified between 1986 and 2012. Their distributions in space, time, and El Niño–Southern Oscillation (ENSO) state are described. About 150 EWSs occur during ENSO-neutral conditions, during the months associated with La Niña initiation and growth (April–December). Composites of changes in sea surface temperature anomaly (SSTA) following these ~150 events show statistically significant cooling (0.1°–0.4°C) along the oceanic waveguide that persists for 2–3 months following the EWSs. Experiments with EWS forcing of an ocean general circulation model show SSTA patterns like those in the observations. It is suggested that EWSs play an important role in the onset of La Niña waveguide surface cooling and deserve additional study.

Full access
Andrew M. Chiodi and Don E. Harrison

Abstract

The North Atlantic hurricane seasons of 2005 and 2006 were dramatically different for the Gulf Coast and eastern seaboard of the United States. The 2005 hurricane season was one of the most destructive seasons in history, whereas there was limited impact in 2006. Hurricane activity had been forecast to be above normal in 2006, but it was not. One of the conspicuous differences in environmental conditions between these two years was sea surface temperature anomaly (SSTA) over a region of the western Atlantic and Caribbean (15°–30°N, 70°–40°W), which is important for hurricane formation and intensification. SSTA was more than 1.5 standard deviations warmer during the 2005 hurricane season, but it was much less in 2006 through most of its hurricane season. The intent of this study is to determine the mechanisms responsible for this SSTA difference. It is shown that the difference can be reproduced using a simple one-dimensional (1D) ocean mixed layer model forced with surface fluxes from the NCEP–NCAR reanalysis project. It is found that there are two causes of SSTA difference over this region during July through September: the first is latent heat flux variability caused by wind speed effects, and the second is nonlinear ocean warming caused by submonthly atmospheric variability. The observed SSTA difference is reproduced by our model even though solar forcing damps the observed difference, contrary to previous hypotheses.

Full access
Andrew M. Chiodi, D. E. Harrison, and Gabriel A. Vecchi

Abstract

Westerly wind events (WWEs) have previously been shown to initiate equatorial Pacific waveguide warming. The relationship between WWEs and Madden–Julian oscillation (MJO) activity, as well as the role of MJO events in initiating waveguide warming, is reconsidered here over the 1986–2010 period. WWEs are identified in observations of near-surface zonal winds using an objective scheme. MJO events are defined using a widely used index, and 64 are identified that occur when the El Niño–Southern Oscillation (ENSO) is in its neutral state. Of these MJO events, 43 have one or more embedded WWEs and 21 do not. The evolution of sea surface temperature anomaly over the equatorial Pacific waveguide following the westerly surface wind phase of the MJO over the western equatorial Pacific is examined. Waveguide warming is found for the MJO with WWE events in similar magnitudes as following the WWEs not embedded in an MJO. There is very little statistically significant waveguide warming following MJO events that do not contain an embedded WWE. The observed SST anomaly changes are well reproduced in an ocean general circulation model forced with the respective composite wind stress anomalies. Further, it is found that the occurrence of an MJO event does not significantly affect the likelihood that a WWE will occur. These results extend and confirm the earlier results of Vecchi with a near doubling of the period of study. It is suggested that understanding the sources and predictability of tropical Pacific westerly wind events remains essential to improving predictions of the onset of El Niño events.

Full access