Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Andrew M. Hall x
  • All content x
Clear All Modify Search
Matt C. Wilbanks, Sandra E. Yuter, Simon P. de Szoeke, W. Alan Brewer, Matthew A. Miller, Andrew M. Hall, and Casey D. Burleyson

Abstract

Density currents (i.e., cold pools or outflows) beneath marine stratocumulus clouds are characterized using 30 days of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An air density increase criterion applied to the Improved Meteorological (IMET) sensor data identified 71 density current front, core (peak density), and tail (dissipating) zones. The similarity in speeds of the mean density current propagation speed (1.8 m s−1) and the mean cloud-level advection relative to the surface layer wind (1.9 m s−1) allowed drizzle cells to deposit elongated density currents in their wakes. Scanning Doppler lidar captured prefrontal updrafts with a mean intensity of 0.91 m s−1 and an average vertical extent of 800 m. Updrafts were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. The observed density currents were 5–10 times thinner and weaker than typical continental thunderstorm cold pools. Nearly 90% of density currents were identified when C-band radar estimated areal average rain rates exceeded 1 mm day−1 over a 30-km diameter. Rather than peaking when rain rates were highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurred with shallow subcloud dry and stable layers. The dry layers may have contributed to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occurred in a large region of predominantly open cells but also occurred in regions of closed cells.

Full access
Gary A. Wick, Jason P. Dunion, Peter G. Black, John R. Walker, Ryan D. Torn, Andrew C. Kren, Altug Aksoy, Hui Christophersen, Lidia Cucurull, Brittany Dahl, Jason M. English, Kate Friedman, Tanya R. Peevey, Kathryn Sellwood, Jason A. Sippel, Vijay Tallapragada, James Taylor, Hongli Wang, Robbie E. Hood, and Philip Hall

Abstract

The National Oceanic and Atmospheric Administration’s (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT) project evaluated the ability of observations from high-altitude unmanned aircraft to improve forecasts of high-impact weather events like tropical cyclones or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. During three field campaigns conducted in 2015 and 2016, the National Aeronautics and Space Administration (NASA) Global Hawk, instrumented with GPS dropwindsondes and remote sensors, flew 15 missions sampling 6 tropical cyclones and 3 winter storms. Missions were designed using novel techniques to target sampling regions where high model forecast uncertainty and a high sensitivity to additional observations existed. Data from the flights were examined in real time by operational forecasters, assimilated in operational weather forecast models, and applied postmission to a broad suite of data impact studies. Results from the analyses spanning different models and assimilation schemes, though limited in number, consistently demonstrate the potential for a positive forecast impact from the observations, both with and without a gap in satellite coverage. The analyses with the then-operational modeling system demonstrated large forecast improvements near 15% for tropical cyclone track at a 72-h lead time when the observations were added to the otherwise complete observing system. While future decisions regarding use of the Global Hawk platform will include budgetary considerations, and more observations are required to enhance statistical significance, the scientific results support the potential merit of the observations. This article provides an overview of the missions flown, observational approach, and highlights from the completed and ongoing data impact studies.

Full access
Gavin A. Schmidt, Reto Ruedy, James E. Hansen, Igor Aleinov, Nadine Bell, Mike Bauer, Susanne Bauer, Brian Cairns, Vittorio Canuto, Ye Cheng, Anthony Del Genio, Greg Faluvegi, Andrew D. Friend, Tim M. Hall, Yongyun Hu, Max Kelley, Nancy Y. Kiang, Dorothy Koch, Andy A. Lacis, Jean Lerner, Ken K. Lo, Ron L. Miller, Larissa Nazarenko, Valdar Oinas, Jan Perlwitz, Judith Perlwitz, David Rind, Anastasia Romanou, Gary L. Russell, Makiko Sato, Drew T. Shindell, Peter H. Stone, Shan Sun, Nick Tausnev, Duane Thresher, and Mao-Sung Yao

Abstract

A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere temperatures and winds, cloud heights, precipitation, and sea level pressure. Data–model comparisons continue, however, to highlight persistent problems in the marine stratocumulus regions.

Full access
Nirnimesh Kumar, James A. Lerczak, Tongtong Xu, Amy F. Waterhouse, Jim Thomson, Eric J. Terrill, Christy Swann, Sutara H. Suanda, Matthew S. Spydell, Pieter B. Smit, Alexandra Simpson, Roland Romeiser, Stephen D. Pierce, Tony de Paolo, André Palóczy, Annika O’Dea, Lisa Nyman, James N. Moum, Melissa Moulton, Andrew M. Moore, Arthur J. Miller, Ryan S. Mieras, Sophia T. Merrifield, Kendall Melville, Jacqueline M. McSweeney, Jamie MacMahan, Jennifer A. MacKinnon, Björn Lund, Emanuele Di Lorenzo, Luc Lenain, Michael Kovatch, Tim T. Janssen, Sean Haney, Merrick C. Haller, Kevin Haas, Derek J. Grimes, Hans C. Graber, Matt K. Gough, David A. Fertitta, Falk Feddersen, Christopher A. Edwards, William Crawford, John Colosi, C. Chris Chickadel, Sean Celona, Joseph Calantoni, Edward F. Braithwaite III, Johannes Becherer, John A. Barth, and Seongho Ahn

Abstract

The inner shelf, the transition zone between the surf zone and the mid shelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from Sep.-Oct. 2017, conducted from the mid shelf, through the inner shelf and into the surf zone near Point Sal, CA. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the mid shelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.

Full access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Full access