Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Anoop A. Nayak x
  • All content x
Clear All Modify Search
Jenson V. George, P. N. Vinayachandran, and Anoop A. Nayak


The inflow of high-saline water from the Arabian Sea (AS) into the Bay of Bengal (BoB) and its subsequent mixing with the relatively fresh BoB water is vital for the north Indian Ocean salt budget. During June–September, the Summer Monsoon Current carries high-salinity water from the AS to the BoB. A time series of microstructure and hydrographic data collected from 4 to 14 July 2016 in the southern BoB (8°N, 89°E) showed the presence of a subsurface (60–150 m) high-salinity core. The high-salinity core was composed of relatively warm and saline AS water overlying the relatively cold and fresh BoB water. The lower part of the high-salinity core showed double-diffusive salt fingering instability. Salt fingering staircases with varying thickness (up to 10 m) in the temperature and salinity profiles were also observed at the base of a high-salinity core at approximately 75–150-m depth. The average downward diapycnal salt flux out of the high-salinity core due to the effect of salt fingering was 2.8 × 10−7 kg m−2 s−1, approximately one order of magnitude higher than the flux if salt fingering was neglected.

Restricted access
Jenson V. George, P. N. Vinayachandran, V. Vijith, V. Thushara, Anoop A. Nayak, Shrikant M. Pargaonkar, P. Amol, K. Vijaykumar, and Adrian J. Matthews


During the Bay of Bengal (BoB) Boundary Layer Experiment (BoBBLE) in the southern BoB, time series of microstructure measurements were obtained at 8°N, 89°E from 4 to 14 July 2016. These observations captured events of barrier layer (BL) erosion and reformation. Initially, a three-layer structure was observed: a fresh surface mixed layer (ML) of thickness 10–20 m; a BL below of 30–40-m thickness with similar temperature but higher salinity; and a high salinity core layer, associated with the Summer Monsoon Current. Each of these three layers was in relative motion to the others, leading to regions of high shear at the interfaces. However, the destabilizing influence of the shear regions was not enough to overcome the haline stratification, and the three-layer structure was preserved. A salinity budget using in situ observations suggested that during the BL erosion, differential advection brought high salinity surface waters (34.5 psu) with weak stratification to the time series location and replaced the three-layer structure with a deep ML (~60 m). The resulting weakened stratification at the time series location then allowed atmospheric wind forcing to penetrate deeper. The turbulent kinetic energy dissipation rate and eddy diffusivity showed elevated values above 10−7 W kg−1 and 10−4 m2 s−1, respectively, in the upper 60 m. Later, the surface salinity decreased again (33.8 psu) through differential horizontal advection, stratification became stronger and elevated mixing rates were confined to the upper 20 m, and the BL reformed. A 1D model experiment suggested that in the study region, differential advection of temperature–salinity characteristics is essential for the maintenance of BL and to the extent to which mixing penetrates the water column.

Full access
P. N. Vinayachandran, Adrian J. Matthews, K. Vijay Kumar, Alejandra Sanchez-Franks, V. Thushara, Jenson George, V. Vijith, Benjamin G. M. Webber, Bastien Y. Queste, Rajdeep Roy, Amit Sarkar, Dariusz B. Baranowski, G. S. Bhat, Nicholas P. Klingaman, Simon C. Peatman, C. Parida, Karen J. Heywood, Robert Hall, Brian King, Elizabeth C. Kent, Anoop A. Nayak, C. P. Neema, P. Amol, A. Lotliker, A. Kankonkar, D. G. Gracias, S. Vernekar, A. C. D’Souza, G. Valluvan, Shrikant M. Pargaonkar, K. Dinesh, Jack Giddings, and Manoj Joshi


The Bay of Bengal (BoB) plays a fundamental role in controlling the weather systems that make up the South Asian summer monsoon system. In particular, the southern BoB has cooler sea surface temperatures (SST) that influence ocean–atmosphere interaction and impact the monsoon. Compared to the southeastern BoB, the southwestern BoB is cooler, more saline, receives much less rain, and is influenced by the summer monsoon current (SMC). To examine the impact of these features on the monsoon, the BoB Boundary Layer Experiment (BoBBLE) was jointly undertaken by India and the United Kingdom during June–July 2016. Physical and biogeochemical observations were made using a conductivity–temperature–depth (CTD) profiler, five ocean gliders, an Oceanscience Underway CTD (uCTD), a vertical microstructure profiler (VMP), two acoustic Doppler current profilers (ADCPs), Argo floats, drifting buoys, meteorological sensors, and upper-air radiosonde balloons. The observations were made along a zonal section at 8°N between 85.3° and 89°E with a 10-day time series at 8°N, 89°E. This paper presents the new observed features of the southern BoB from the BoBBLE field program, supported by satellite data. Key results from the BoBBLE field campaign show the Sri Lanka dome and the SMC in different stages of their seasonal evolution and two freshening events during which salinity decreased in the upper layer, leading to the formation of thick barrier layers. BoBBLE observations were taken during a suppressed phase of the intraseasonal oscillation; they captured in detail the warming of the ocean mixed layer and the preconditioning of the atmosphere to convection.

Open access