Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Anthony F. Gigi x
  • Refine by Access: All Content x
Clear All Modify Search
George J. Maglaras
,
Jeff S. Waldstreicher
,
Paul J. Kocin
,
Anthony F. Gigi
, and
Robert A. Marine

Abstract

The complex combination of synoptic- and mesoscale interactions topographic influences, and large population densities poses a multitude of challenging problems to winter weather forecasters throughout the eastern United States. Over the years, much has been learned about the structure, evolution, and attendant precipitation within winter storms. As a result, numerous operational procedures, forecast applications, and objective techniques have been developed at National Weather Service offices to assess the potential for hazardous winter weather.

An overview of the challenge of forecasting winter weather in the eastern United States is presented, including a historical review of several legendary winter storms, from the Blizzard of 1888 to the Halloween Nor'easter of 1991. The synoptic-scale features associated with East Coast winter storms are described. The mesoscale nature of many eastern winter weather events is illustrated through an examination of the Veterans' Day Snowstorm of 11 November 1987, and the Long Island Snowstorm of 13 December 1988. The development of applied forecast techniques and the potential for new remote sensing technologies (e.g., Doppler weather radar and wind profilers) and mesoscale models to improve operational forecasts of winter weather hazards are also discussed. Companion papers focus on cyclogenesis, terrain-related winter weather forecast considerations in the Southeast, and lake effect snow forecasting.

Full access
James J. Gurka
,
Eugene P. Auciello
,
Anthony F. Gigi
,
Jeff S. Waldstreicher
,
Kermit K. Keeter
,
Steven Businger
, and
Laurence G. Lee

Abstract

The complex combination of synoptic and mesoscale interactions, topographic influences, and large population densities poses a multitude of challenging problems to winter weather forecasters throughout the eastern United States. Over the years, much has been learned about the structure, evolution, and attendant precipitation within winter storms. As a result, numerous operational procedures, forecast applications, and objective techniques have been developed at National Weather Service offices to assess the potential for, and forecast, hazardous winter weather. A companion paper by Maglaras et al. provided an overview of the challenge of forecasting winter weather in the eastern United States.

This paper focuses on the problem of cyclogenesis from an operational perspective. Since pattern recognition is an important tool employed by field forecasters, a review of several conceptual models of cyclogenesis often observed in the east is presented. These include classical Miller type A and B cyclogenesis, zipper lows, 500-mb cutoff lows, and cold-air cyclogenesis. The ability of operational dynamical models to predict East Coast cyclones and, in particular, explosive cyclogenesis is explored. An operational checklist that utilizes information from the Nested Grid Model to forecast the potential for rapid cyclogenesis is also described. A review of signatures related to cyclogenesis in visible, infrared, and water vapor satellite imagery is presented. Finally, a study of water vapor imagery for 16 cases of explosive cyclogenesis between 1988 and 1990 indicates that an acceleration of a dry (dark) surge with speeds exceeding 25 m s−1, toward a baroclinic zone, is an excellent indicator of the imminent onset of rapid deepening.

Full access