Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Antonio O. Manzi x
  • Refine by Access: All Content x
Clear All Modify Search
Jiujing Gu
,
Eric A. Smith
,
Harry J. Cooper
,
Andrew Grose
,
Guosheng Liu
,
James D. Merritt
,
Maarten J. Waterloo
,
Alessandro C. de Araújo
,
Antonio D. Nobre
,
Antonio O. Manzi
,
Jose Marengo
,
Paulo J. de Oliveira
,
Celso von Randow
,
John Norman
, and
Pedro Silva Dias

Abstract

In this first part of a two-part investigation, large-scale Geostationary Operational Environmental Satellite (GOES) analyses over the Amazônia region have been carried out for March and October of 1999 to provide detailed information on surface radiation budget (SRB) and precipitation variability. SRB fluxes and rainfall are the two foremost cloud-modulated control variables that affect land surface processes, and they require specification at space–time resolutions concomitant with the changing cloud field to represent adequately the complex coupling of energy, water, and carbon budgets. These processes ultimately determine the relative variations in carbon sequestration and carbon dioxide release within a forest ecosystem. SRB and precipitation retrieval algorithms using GOES imager measurements are used to retrieve surface downward radiation and surface rain rates at high space–time resolutions for large-scale carbon budget modeling applications in conjunction with the Large-Scale Biosphere–Atmosphere Experiment in Amazônia. To validate the retrieval algorithms, instantaneous estimates of SRB fluxes and rain rates over 8 km × 8 km areas were compared with 30-min-averaged surface measurements obtained from tower sites located near Ji-Paraná and Manaus in the states of Rondônia and Amazonas, respectively. Because of large aerosol concentrations originating from biomass burning during the dry season (i.e., September and October for purposes of this analysis), an aerosol index from the Total Ozone Mapping Spectrometer is used in the solar radiation retrieval algorithm. The validation comparisons indicate that bias errors for incoming total solar, photosynthetically active radiation (PAR), and infrared flux retrievals are under 4%, 6%, and 3% of the mean values, respectively. Precision errors at the analyzed space– time scales are on the order of 20%, 20%, and 5%. The visible and infrared satellite measurements used for precipitation retrieval do not directly detect rainfall processes, and yet they are responsive to the rapidly changing cloud fields, which are directly associated with precipitation life cycles over the Amazon basin. In conducting the validation analysis at high space–time scales, the comparisons indicate systematic bias uncertainties on the order of 25%. These uncertainties are comparable to published values from an independent assessment of bias uncertainties inherent to the current highest-quality satellite retrievals, that is, from the Tropical Rainfall Measuring Mission. Because precipitation is a weak direct control on photosynthesis for the Amazon ecosystem, that is, photosynthesis is dominated by the strong diurnal controls of incoming PAR and ambient air-canopy temperatures, such uncertainties are tolerable. By the same token, precipitation is a strong control on soil thermal properties and carbon respiration through soil moisture, but the latter is a time-integrating variable and thus inhibits introduction of modeling errors caused by random errors in the precipitation forcing. The investigation concludes with analysis of the monthly, daily, and diurnal variations intrinsic to SRB and rainfall processes over the Amazon basin, including explanations of how these variations arise during wet- and dry-season periods.

Full access
Ariane Frassoni
,
Dayana Castilho
,
Michel Rixen
,
Enver Ramirez
,
João Gerd Z. de Mattos
,
Paulo Kubota
,
Alan James Peixoto Calheiros
,
Kevin A. Reed
,
Maria Assunção F. da Silva Dias
,
Pedro L. da Silva Dias
,
Haroldo Fraga de Campos Velho
,
Stephan R. de Roode
,
Francisco Doblas-Reyes
,
Denis Eiras
,
Michael Ek
,
Silvio N. Figueroa
,
Richard Forbes
,
Saulo R. Freitas
,
Georg A. Grell
,
Dirceu L. Herdies
,
Peter H. Lauritzen
,
Luiz Augusto T. Machado
,
Antonio O. Manzi
,
Guilherme Martins
,
Gilvan S. Oliveira
,
Nilton E. Rosário
,
Domingo C. Sales
,
Nils Wedi
, and
Bárbara Yamada
Full access
Manfred Wendisch
,
Ulrich Pöschl
,
Meinrat O. Andreae
,
Luiz A. T. Machado
,
Rachel Albrecht
,
Hans Schlager
,
Daniel Rosenfeld
,
Scot T. Martin
,
Ahmed Abdelmonem
,
Armin Afchine
,
Alessandro C. Araùjo
,
Paulo Artaxo
,
Heinfried Aufmhoff
,
Henrique M. J. Barbosa
,
Stephan Borrmann
,
Ramon Braga
,
Bernhard Buchholz
,
Micael Amore Cecchini
,
Anja Costa
,
Joachim Curtius
,
Maximilian Dollner
,
Marcel Dorf
,
Volker Dreiling
,
Volker Ebert
,
André Ehrlich
,
Florian Ewald
,
Gilberto Fisch
,
Andreas Fix
,
Fabian Frank
,
Daniel Fütterer
,
Christopher Heckl
,
Fabian Heidelberg
,
Tilman Hüneke
,
Evelyn Jäkel
,
Emma Järvinen
,
Tina Jurkat
,
Sandra Kanter
,
Udo Kästner
,
Mareike Kenntner
,
Jürgen Kesselmeier
,
Thomas Klimach
,
Matthias Knecht
,
Rebecca Kohl
,
Tobias Kölling
,
Martina Krämer
,
Mira Krüger
,
Trismono Candra Krisna
,
Jost V. Lavric
,
Karla Longo
,
Christoph Mahnke
,
Antonio O. Manzi
,
Bernhard Mayer
,
Stephan Mertes
,
Andreas Minikin
,
Sergej Molleker
,
Steffen Münch
,
Björn Nillius
,
Klaus Pfeilsticker
,
Christopher Pöhlker
,
Anke Roiger
,
Diana Rose
,
Dagmar Rosenow
,
Daniel Sauer
,
Martin Schnaiter
,
Johannes Schneider
,
Christiane Schulz
,
Rodrigo A. F. de Souza
,
Antonio Spanu
,
Paul Stock
,
Daniel Vila
,
Christiane Voigt
,
Adrian Walser
,
David Walter
,
Ralf Weigel
,
Bernadett Weinzierl
,
Frank Werner
,
Marcia A. Yamasoe
,
Helmut Ziereis
,
Tobias Zinner
, and
Martin Zöger

Abstract

Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements. Fourteen research flights with a total duration of 96 flight hours were performed. Five scientific topics were pursued: 1) cloud vertical evolution and life cycle (cloud profiling), 2) cloud processing of aerosol particles and trace gases (inflow and outflow), 3) satellite and radar validation (cloud products), 4) vertical transport and mixing (tracer experiment), and 5) cloud formation over forested/deforested areas. Data were collected in near-pristine atmospheric conditions and in environments polluted by biomass burning and urban emissions. The paper presents a general introduction of the ACRIDICON– CHUVA campaign (motivation and addressed research topics) and of HALO with its extensive instrument package, as well as a presentation of a few selected measurement results acquired during the flights for some selected scientific topics.

Full access