Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Ariaan Purich x
  • All content x
Clear All Modify Search
Ariaan Purich and Seok-Woo Son

Abstract

The possible impact of Antarctic ozone depletion and recovery on Southern Hemisphere (SH) mean and extreme precipitation and evaporation is examined using multimodel output from the Climate Model Intercomparison Project 3 (CMIP3). By grouping models into four sets, those with and without ozone depletion in twentieth-century climate simulations and those with and without ozone recovery in twenty-first-century climate simulations, and comparing their multimodel-mean trends, it is shown that Antarctic ozone forcings significantly modulate extratropical precipitation changes in austral summer. The impact on evaporation trends is however minimal, especially in twentieth-century climate simulations. In general, ozone depletion has increased (decreased) precipitation in high latitudes (midlatitudes), in agreement with the poleward displacement of the westerly jet and associated storm tracks by Antarctic ozone depletion. Although weaker, the opposite is also true for ozone recovery. These precipitation changes are primarily associated with changes in light precipitation (1–10 mm day−1). Contributions by very light precipitation (0.1–1 mm day−1) and moderate-to-heavy precipitation (>10 mm day−1) are minor. Likewise, no systematic changes are found in extreme precipitation events, although extreme surface wind events are highly sensitive to ozone forcings. This result indicates that, while extratropical mean precipitation trends are significantly modulated by ozone-induced large-scale circulation changes, extreme precipitation changes are likely more sensitive to thermodynamic processes near the surface than to dynamical processes in the free atmosphere.

Full access
Ariaan Purich, Tim Cowan, Seung-Ki Min, and Wenju Cai

Abstract

In recent decades, Southern Hemisphere midlatitude regions such as southern Africa, southeastern Australia, and southern Chile have experienced a reduction in austral autumn precipitation; the cause of which is poorly understood. This study focuses on the ability of global climate models that form part of the Coupled Model Intercomparison Project phase 5 to simulate these trends, their relationship with extratropical and subtropical processes, and implications for future precipitation changes. Models underestimate both the historical autumn poleward expansion of the subtropical dry zone and the positive southern annular mode (SAM) trend. The multimodel ensemble (MME) is also unable to capture the spatial pattern of observed precipitation trends across semiarid midlatitude regions. However, in temperate regions that are located farther poleward such as southern Chile, the MME simulates observed precipitation declines. The MME shows a strong consensus in twenty-first-century declines in autumn precipitation across southern Chile in both the medium–low and high representative concentration pathway (RCP) scenarios and across southern Africa in the high RCP scenario, but little change across southeastern Australia. Projecting a strong positive SAM trend and continued subtropical dry-zone expansion, the models converge on large SAM and dry-zone-expansion-induced precipitation declines across southern midlatitudes. In these regions, the strength of future precipitation trends is proportional to the strength of modeled trends in these phenomena, suggesting that unabated greenhouse gas–induced climate change will have a large impact on austral autumn precipitation in such midlatitude regions.

Full access
Tim Cowan, Peter van Rensch, Ariaan Purich, and Wenju Cai

Abstract

Relationships of the Indian Ocean dipole (IOD), El Niño–Southern Oscillation (ENSO), and the southern annular mode (SAM) with atmospheric blocking are investigated using a linear framework over the austral autumn–spring (cool) seasons for southeast Australia (SEA). Positive blocking events occurring at 130°–140°E increase the likelihood of cutoff low pressure systems developing that generate significant rainfall totals across SEA. In mid to late austral autumn (April–May), blocking is coherent with negative IOD events. During this season, a negative IOD event and blocking are associated with warm sea surface temperature anomalies in the eastern tropical Indian Ocean and a blocking high pressure cell south of Australia. An anomalous cyclonic pressure center over southern Australia directs tropical moisture flux anomalies to the region. Despite this, only a small portion of a negative IOD's impact on SEA rainfall comes through blocking events. During austral winter, ENSO is coherent with blocking; anomalous tropical moisture fluxes from the western Pacific during a La Niña merge with anomalous cyclonic flows centered over SEA, delivering enhanced rainfall via cutoff lows. The low pressure cell constitutes a center of the Southern Oscillation associated with ENSO. This ENSO-blocking coherence is considerably weaker in austral spring, whereby circulation anomalies associated with blocking resemble a SAM-like pattern. As such, a large portion of the SAM's impact on SEA spring rainfall occurs in conjunction with blocking events. The relative importance of associations between the dominant climate modes and blocking in generating the drought-breaking cool season precipitation in 2010 across SEA is discussed.

Full access
Tim Cowan, Ariaan Purich, Sarah Perkins, Alexandre Pezza, Ghyslaine Boschat, and Katherine Sadler

Abstract

Extremes such as summer heat waves and winter warm spells have a significant impact on the climate of Australia, with many regions experiencing an increase in the frequency and duration of these events since the mid-twentieth century. With the availability of Coupled Model Intercomparison Project phase 5 (CMIP5) climate models, projected changes in heat waves and warm spells are investigated across Australia for two future emission scenarios. For the historical period encompassing the late twentieth century (1950–2005) an ensemble mean of 15 models is able to broadly capture the observed spatial distribution in the frequency and duration of summer heat waves, despite overestimating these metrics along coastal regions. The models achieve a better comparison to observations in their simulation of the temperature anomaly of the hottest heat waves. By the end of the twenty-first century, the model ensemble mean projects the largest increase in summer heat wave frequency and duration to occur across northern tropical regions, while projecting an increase of ~3°C in the maximum temperature of the hottest southern Australian heat waves. Model consensus suggests that future winter warm spells will increase in frequency and duration at a greater rate than summer heat waves, and that the hottest events will become increasingly hotter for both seasons by century’s end. Even when referenced to a warming mean state, increases in the temperature of the hottest events are projected for southern Australia. Results also suggest that following a strong mitigation pathway in the future is more effective in reducing the frequency and duration of heat waves and warm spells in the southern regions compared to the northern tropical regions.

Full access
Wenju Cai, Ariaan Purich, Tim Cowan, Peter van Rensch, and Evan Weller

Abstract

The Australian decade-long “Millennium Drought” broke in the summer of 2010/11 and was considered the most severe drought since instrumental records began in the 1900s. A crucial question is whether climate change played a role in inducing the rainfall deficit. The climate modes in question include the Indian Ocean dipole (IOD), affecting southern Australia in winter and spring; the southern annular mode (SAM) with an opposing influence on southern Australia in winter to that in spring; and El Niño–Southern Oscillation, affecting northern and eastern Australia in most seasons and southeastern Australia in spring through its coherence with the IOD. Furthermore, the poleward edge of the Southern Hemisphere Hadley cell, which indicates the position of the subtropical dry zone, has possible implications for recent rainfall declines in autumn. Using observations and simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), it is shown that the drought over southwest Western Australia is partly attributable to a long-term upward SAM trend, which contributed to half of the winter rainfall reduction in this region. For southeast Australia, models simulate weak trends in the pertinent climate modes. In particular, they severely underestimate the observed poleward expansion of the subtropical dry zone and associated impacts. Thus, although climate models generally suggest that Australia’s Millennium Drought was mostly due to multidecadal variability, some late-twentieth-century changes in climate modes that influence regional rainfall are partially attributable to anthropogenic greenhouse warming.

Full access
Tim Cowan, Gabriele C. Hegerl, Ioana Colfescu, Massimo Bollasina, Ariaan Purich, and Ghyslaine Boschat

Abstract

Record-breaking summer heat waves were experienced across the contiguous United States during the decade-long “Dust Bowl” drought in the 1930s. Using high-quality daily temperature observations, the Dust Bowl heat wave characteristics are assessed with metrics that describe variations in heat wave activity and intensity. Despite the sparser station coverage in the early record, there is robust evidence for the emergence of exceptional heat waves across the central Great Plains, the most extreme of which were preconditioned by anomalously dry springs. This is consistent with the entire twentieth-century record: summer heat waves over the Great Plains develop on average ~15–20 days earlier after anomalously dry springs, compared to summers following wet springs. Heat waves following dry springs are also significantly longer and hotter, indicative of the importance of land surface feedbacks in heat wave intensification. A distinctive anomalous continental-wide circulation pattern accompanied exceptional heat waves in the Great Plains, including those of the Dust Bowl decade. An anomalous broad surface pressure ridge straddling an upper-level blocking anticyclone over the western United States forced substantial subsidence and adiabatic warming over the Great Plains, and triggered anomalous southward warm advection over southern regions. This prolonged and amplified the heat waves over the central United States, which in turn gradually spread westward following heat wave emergence. The results imply that exceptional heat waves are preconditioned, triggered, and strengthened across the Great Plains through a combination of spring drought, upper-level continental-wide anticyclonic flow, and warm advection from the north.

Full access
Ariaan Purich, Matthew H. England, Wenju Cai, Arnold Sullivan, and Paul J. Durack

Abstract

The Southern Ocean surface has freshened in recent decades, increasing water column stability and reducing upwelling of warmer subsurface waters. The majority of CMIP5 models underestimate or fail to capture this historical surface freshening, yet little is known about the impact of this model bias on regional ocean circulation and hydrography. Here experiments are performed using a global coupled climate model with additional freshwater applied to the Southern Ocean to assess the influence of recent surface freshening. The simulations explore the impact of persistent and long-term broad-scale freshening as a result of processes including precipitation minus evaporation changes. Thus, unlike previous studies, the freshening is applied as far north as 55°S, beyond the Antarctic ice margin. It is found that imposing a large-scale surface freshening causes a surface cooling and sea ice increase under preindustrial conditions, because of a reduction in ocean convection and weakened entrainment of warm subsurface waters into the surface ocean. This is consistent with intermodel relationships between CMIP5 models and the simulations, suggesting that models with larger surface freshening also exhibit stronger surface cooling and increased sea ice. Additional experiments are conducted with surface salinity restoration applied to capture observed regional salinity trends. Remarkably, without any mechanical wind trend forcing, these simulations accurately represent the spatial pattern of observed surface temperature and sea ice trends around Antarctica. This study highlights the importance of accurately simulating changes in Southern Ocean salinity to capture changes in ocean circulation, sea surface temperature, and sea ice.

Full access
Ariaan Purich, Tim Cowan, Wenju Cai, Peter van Rensch, Petteri Uotila, Alexandre Pezza, Ghyslaine Boschat, and Sarah Perkins

Abstract

Atmospheric and oceanic conditions associated with southern Australian heat waves are examined using phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Accompanying work analyzing modeled heat wave statistics for Australia finds substantial increases in the frequency, duration, and temperature of heat waves by the end of the twenty-first century. This study assesses the ability of CMIP5 models to simulate the synoptic and oceanic conditions associated with southern Australian heat waves, and examines how the classical atmospheric setup associated with heat waves is projected to change in response to mean-state warming. To achieve this, near-surface temperature, mean sea level pressure, and sea surface temperature (SST) from the historical and high-emission simulations are analyzed. CMIP5 models are found to represent the synoptic setup associated with heat waves well, despite showing greater variation in simulating SST anomalies. The models project a weakening of the pressure couplet associated with future southern Australian heat waves, suggesting that even a non-classical synoptic setup is able to generate more frequent heat waves in a warmer world. A future poleward shift and strengthening of heat wave–inducing anticyclones is confirmed using a tracking scheme applied to model projections. Model consensus implies that while anticyclones associated with the hottest future southern Australian heat waves will be more intense and originate farther poleward, a greater proportion of heat waves occur in association with a weaker synoptic setup that, when combined with warmer mean-state temperatures, gives rise to more future heat waves.

Full access
Ariaan Purich, Matthew H. England, Wenju Cai, Yoshimitsu Chikamoto, Axel Timmermann, John C. Fyfe, Leela Frankcombe, Gerald A. Meehl, and Julie M. Arblaster

Abstract

A strengthening of the Amundsen Sea low from 1979 to 2013 has been shown to largely explain the observed increase in Antarctic sea ice concentration in the eastern Ross Sea and decrease in the Bellingshausen Sea. Here it is shown that while these changes are not generally seen in freely running coupled climate model simulations, they are reproduced in simulations of two independent coupled climate models: one constrained by observed sea surface temperature anomalies in the tropical Pacific and the other by observed surface wind stress in the tropics. This analysis confirms previous results and strengthens the conclusion that the phase change in the interdecadal Pacific oscillation from positive to negative over 1979–2013 contributed to the observed strengthening of the Amundsen Sea low and the associated pattern of Antarctic sea ice change during this period. New support for this conclusion is provided by simulated trends in spatial patterns of sea ice concentrations that are similar to those observed. These results highlight the importance of accounting for teleconnections from low to high latitudes in both model simulations and observations of Antarctic sea ice variability and change.

Full access