Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Arlan Dirkson x
  • All content x
Clear All Modify Search
Arlan Dirkson, William J. Merryfield, and Adam Monahan


A promising means for increasing skill of seasonal predictions of Arctic sea ice is improving sea ice thickness (SIT) initial conditions; however, sparse SIT observations limit this potential. Using the Canadian Climate Model, version 3 (CanCM3), three statistical models designed to estimate SIT fields for initialization in a real-time forecasting system are applied to initialize sea ice hindcasts over 1981–2012. Hindcast skill is assessed relative to two benchmark SIT initialization methods (SIT-IMs): a climatological initialization currently used operationally and SIT values from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Based on several measures of skill, sea ice predictions are generally improved relative to a climatological initialization. The accuracy with which the initialization fields represent both the thinning of the ice pack over time and interannual variability impacts predictive skill for pan-Arctic sea ice area (SIA) and regional sea ice concentration (SIC), with the most robust improvements obtained with SIT-IMs that best represent both processes. Similar skill to that achieved by initializing with PIOMAS, including skillful predictions of detrended September SIA from May, is obtained by initializing with two of the statistical models. Regional skill for September SIC is also enhanced using improved SIT-IMs, with an increase in the spatial coverage of statistically significant skill from 10% to 60%–70% of the appreciably varying ice pack. Reduced skill is seen, however, in the Nordic seas using the improved SIT-IMs, resulting from an inherent cold sea surface temperature bias in CanCM3 that is amplified by a thicker initial ice cover.

Full access
Arlan Dirkson, William J. Merryfield, and Adam H. Monahan


Seasonal forecasts of Arctic sea ice using dynamical models are inherently uncertain and so are best communicated in terms of probabilities. Here, we describe novel statistical postprocessing methodologies intended to improve ensemble-based probabilistic forecasts of local sea ice concentration (SIC). The first of these improvements is the application of the parametric zero- and one-inflated beta (BEINF) probability distribution, suitable for doubly bounded variables such as SIC, for obtaining a smoothed forecast probability distribution. The second improvement is the introduction of a novel calibration technique, termed trend-adjusted quantile mapping (TAQM), that explicitly takes into account SIC trends and is applied using the BEINF distribution. We demonstrate these methods using a set of 10-member ensemble SIC hindcasts from the Third Generation Canadian Climate Coupled Global Climate Model (CanCM3) over the period 1981–2017. Though fitting ensemble SIC hindcasts to the BEINF distribution consistently improves probabilistic hindcast skill relative to a simpler “count based” probability approach in perfect model experiments, it does not itself correct model biases that may reduce this improvement when verifying against observations. The TAQM calibration technique is effective at removing SIC biases present in CanCM3 and improving forecast reliability. Over the recent 2000–17 period, TAQM-calibrated SIC hindcasts show improved skill relative to uncalibrated hindcasts. Compared against a climatological reference forecast adjusted for the trend, TAQM-calibrated hindcasts show widespread skill, particularly in September, even at 3–4-month lead times.

Open access
Arlan Dirkson, Bertrand Denis, Michael Sigmond, and William J. Merryfield


Dynamical forecasting systems are being used to skillfully predict deterministic ice-free and freeze-up date events in the Arctic. This paper extends such forecasts to a probabilistic framework and tests two calibration models to correct systematic biases and improve the statistical reliability of the event dates: trend-adjusted quantile mapping (TAQM) and nonhomogeneous censored Gaussian regression (NCGR). TAQM is a probability distribution mapping method that corrects the forecast for climatological biases, whereas NCGR relates the calibrated parametric forecast distribution to the raw ensemble forecast through a regression model framework. For NCGR, the observed event trend and ensemble-mean event date are used to predict the central tendency of the predictive distribution. For modeling forecast uncertainty, we find that the ensemble-mean event date, which is related to forecast lead time, performs better than the ensemble variance itself. Using a multidecadal hindcast record from the Canadian Seasonal to Interannual Prediction System (CanSIPS), TAQM and NCGR are applied to produce categorical forecasts quantifying the probabilities for early, normal, and late ice retreat and advance. While TAQM performs better than adjusting the raw forecast for mean and linear trend bias, NCGR is shown to outperform TAQM in terms of reliability, skill, and an improved tendency for forecast probabilities to be no worse than climatology. Testing various cross-validation setups, we find that NCGR remains useful when shorter hindcast records (~20 years) are available. By applying NCGR to operational forecasts, stakeholders can be more confident in using seasonal forecasts of sea ice event timing for planning purposes.

Restricted access
Hai Lin, William J. Merryfield, Ryan Muncaster, Gregory C. Smith, Marko Markovic, Frédéric Dupont, François Roy, Jean-François Lemieux, Arlan Dirkson, Viatcheslav V. Kharin, Woo-Sung Lee, Martin Charron, and Amin Erfani


The second version of the Canadian Seasonal to Interannual Prediction System (CanSIPSv2) was implemented operationally at Environment and Climate Change Canada (ECCC) in July 2019. Like its predecessors, CanSIPSv2 applies a multimodel ensemble approach with two coupled atmosphere–ocean models, CanCM4i and GEM-NEMO. While CanCM4i is a climate model, which is upgraded from CanCM4 of the previous CanSIPSv1 with improved sea ice initialization, GEM-NEMO is a newly developed numerical weather prediction (NWP)-based global atmosphere–ocean coupled model. In this paper, CanSIPSv2 is introduced, and its performance is assessed based on the reforecast of 30 years from 1981 to 2010, with 10 ensemble members of 12-month integrations for each model. Ensemble seasonal forecast skill of 2-m air temperature, 500-hPa geopotential height, precipitation rate, sea surface temperature, and sea ice concentration is assessed. Verification is also performed for the Niño-3.4, the Pacific–North American pattern (PNA), the North Atlantic Oscillation (NAO), and the Madden–Julian oscillation (MJO) indices. It is found that CanSIPSv2 outperforms the previous CanSIPSv1 system in many aspects. Atmospheric teleconnections associated with the El Niño–Southern Oscillation (ENSO) are reasonably well captured by the two CanSIPSv2 models, and a large part of the seasonal forecast skill in boreal winter can be attributed to the ENSO impact. The two models are also able to simulate the Northern Hemisphere teleconnection associated with the tropical MJO, which likely provides another source of skill on the subseasonal to seasonal time scale.

Open access