Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Arnold F. Moene x
- Refine by Access: All Content x
Abstract
Spatial estimates of actual evapotranspiration are useful for calculating the water balance of river basins, quantifying hydrological services provided by ecosystems, and assessing the hydrological impacts of land-use practices. To provide this information, the authors estimate actual evapotranspiration in central Bolivia with a remote sensing algorithm [Surface Energy Balance Algorithms for Land (SEBAL)]. SEBAL was adapted for the effects of topography (particularly for elevation, slope, and aspect) and atmospheric properties on incoming solar radiation. Instantaneous fluxes are converted to daily and annual fluxes using reference evapotranspiration. The required input data consist of meteorological data and satellite data. Results show more evapotranspiration for humid regions and less evapotranspiration for dry regions and deforested land. Actual evapotranspiration estimates are compared with annual precipitation measurements from 27 meteorological observations. In case annual actual evapotranspiration is estimated correctly, it must be lower than the precipitation measurements. This is the case for 23 stations. The remaining four stations are all located at higher altitudes (>2700 m). Unfortunately, no actual evapotranspiration measurements are available for additional validation purposes.
Abstract
Spatial estimates of actual evapotranspiration are useful for calculating the water balance of river basins, quantifying hydrological services provided by ecosystems, and assessing the hydrological impacts of land-use practices. To provide this information, the authors estimate actual evapotranspiration in central Bolivia with a remote sensing algorithm [Surface Energy Balance Algorithms for Land (SEBAL)]. SEBAL was adapted for the effects of topography (particularly for elevation, slope, and aspect) and atmospheric properties on incoming solar radiation. Instantaneous fluxes are converted to daily and annual fluxes using reference evapotranspiration. The required input data consist of meteorological data and satellite data. Results show more evapotranspiration for humid regions and less evapotranspiration for dry regions and deforested land. Actual evapotranspiration estimates are compared with annual precipitation measurements from 27 meteorological observations. In case annual actual evapotranspiration is estimated correctly, it must be lower than the precipitation measurements. This is the case for 23 stations. The remaining four stations are all located at higher altitudes (>2700 m). Unfortunately, no actual evapotranspiration measurements are available for additional validation purposes.
Abstract
No Abstract available.
Abstract
No Abstract available.
Abstract
In this study, spectral techniques to obtain crosswinds from a single large-aperture scintillometer (SLAS) time series are investigated. The crosswind is defined as the wind component perpendicular to a path. A scintillometer obtains a path-averaged estimate of the crosswind. For certain applications this can be advantageous (e.g., monitoring crosswinds along airport runways). The essence of the spectral techniques lies in the fact that the scintillation power spectrum shifts linearly along the frequency domain as a function of the crosswind. Three different algorithms are used, which are called herein the corner frequency (CF), maximum frequency (MF), and cumulative spectrum (CS) techniques. The algorithms track the frequency shift of a characteristic point in different representations of the scintillation power spectrum. The spectrally derived crosswinds compare well with sonic anemometer estimates. The CS algorithm obtained the best results for the crosswind when compared with the sonic anemometer. However, the MF algorithm was most robust in obtaining the crosswind. Over short time intervals (<1 min) the crosswind can be obtained with the CS algorithm using wavelet instead of fast Fourier transformation to calculate the power scintillation spectra.
Abstract
In this study, spectral techniques to obtain crosswinds from a single large-aperture scintillometer (SLAS) time series are investigated. The crosswind is defined as the wind component perpendicular to a path. A scintillometer obtains a path-averaged estimate of the crosswind. For certain applications this can be advantageous (e.g., monitoring crosswinds along airport runways). The essence of the spectral techniques lies in the fact that the scintillation power spectrum shifts linearly along the frequency domain as a function of the crosswind. Three different algorithms are used, which are called herein the corner frequency (CF), maximum frequency (MF), and cumulative spectrum (CS) techniques. The algorithms track the frequency shift of a characteristic point in different representations of the scintillation power spectrum. The spectrally derived crosswinds compare well with sonic anemometer estimates. The CS algorithm obtained the best results for the crosswind when compared with the sonic anemometer. However, the MF algorithm was most robust in obtaining the crosswind. Over short time intervals (<1 min) the crosswind can be obtained with the CS algorithm using wavelet instead of fast Fourier transformation to calculate the power scintillation spectra.
Abstract
We perform direct numerical simulation of the Couette flow as a model for the stable boundary layer. The flow evolution is investigated for combinations of the (bulk) Reynolds number and the imposed surface buoyancy flux. First, we establish what the similarities and differences are between applying a fixed buoyancy difference (Dirichlet) and a fixed buoyancy flux (Neumann) as boundary conditions. Moreover, two distinct parameters were recently proposed for the turbulent-to-laminar transition: the Reynolds number based on the Obukhov length and the “shear capacity,” a velocity-scale ratio based on the buoyancy flux maximum. We study how these parameters relate to each other and to the atmospheric boundary layer. The results show that in a weakly stratified equilibrium state, the flow statistics are virtually the same between the different types of boundary conditions. However, at stronger stratification and, more generally, in nonequilibrium conditions, the flow statistics do depend on the type of boundary condition imposed. In the case of Neumann boundary conditions, a clear sensitivity to the initial stratification strength is observed because of the existence of multiple equilibriums, while for Dirichlet boundary conditions, only one statistically steady turbulent equilibrium exists for a particular set of boundary conditions. As in previous studies, we find that when the imposed surface flux is larger than the maximum buoyancy flux, no turbulent steady state occurs. Analytical investigation and simulation data indicate that this maximum buoyancy flux converges for increasing Reynolds numbers, which suggests a possible extrapolation to the atmospheric case.
Abstract
We perform direct numerical simulation of the Couette flow as a model for the stable boundary layer. The flow evolution is investigated for combinations of the (bulk) Reynolds number and the imposed surface buoyancy flux. First, we establish what the similarities and differences are between applying a fixed buoyancy difference (Dirichlet) and a fixed buoyancy flux (Neumann) as boundary conditions. Moreover, two distinct parameters were recently proposed for the turbulent-to-laminar transition: the Reynolds number based on the Obukhov length and the “shear capacity,” a velocity-scale ratio based on the buoyancy flux maximum. We study how these parameters relate to each other and to the atmospheric boundary layer. The results show that in a weakly stratified equilibrium state, the flow statistics are virtually the same between the different types of boundary conditions. However, at stronger stratification and, more generally, in nonequilibrium conditions, the flow statistics do depend on the type of boundary condition imposed. In the case of Neumann boundary conditions, a clear sensitivity to the initial stratification strength is observed because of the existence of multiple equilibriums, while for Dirichlet boundary conditions, only one statistically steady turbulent equilibrium exists for a particular set of boundary conditions. As in previous studies, we find that when the imposed surface flux is larger than the maximum buoyancy flux, no turbulent steady state occurs. Analytical investigation and simulation data indicate that this maximum buoyancy flux converges for increasing Reynolds numbers, which suggests a possible extrapolation to the atmospheric case.
Abstract
This study aims to find the typical growth rate of the temperature inversion during the onset of the stable boundary layer around sunset. The sunset transition is a very challenging period for numerical weather prediction, since neither accepted theories for the convective boundary layer nor those for the stable boundary layer appear to be applicable. To gain more insight in this period, a systematic investigation of the temperature inversion growth rate is conducted. A statistical procedure is used to analyze almost 16 years of observations from the Cabauw observational tower, supported by observations from two additional sites (Dome C and Karlsruhe). The results show that, on average, the growth rate of the temperature inversion (normalized by the maximum inversion during the night) weakly declines with increasing wind speed. The observed growth rate is quantitatively consistent among the sites, and it appears insensitive to various other parameters. The results were also insensitive to the afternoon decay rate of the net radiation except when this decay rate was very weak. These observations are compared to numerical solutions of three models with increasing complexity: a bulk model, an idealized single-column model (SCM), and an operational-level SCM. It appears only the latter could reproduce qualitative features of the observations using a first-order closure. Moreover, replacing this closure with a prognostic TKE scheme substantially improved the quantitative performance. This suggests that idealized models assuming instantaneous equilibrium flux-profile relations may not aid in understanding this period, since history effects may qualitatively affect the dynamics.
Abstract
This study aims to find the typical growth rate of the temperature inversion during the onset of the stable boundary layer around sunset. The sunset transition is a very challenging period for numerical weather prediction, since neither accepted theories for the convective boundary layer nor those for the stable boundary layer appear to be applicable. To gain more insight in this period, a systematic investigation of the temperature inversion growth rate is conducted. A statistical procedure is used to analyze almost 16 years of observations from the Cabauw observational tower, supported by observations from two additional sites (Dome C and Karlsruhe). The results show that, on average, the growth rate of the temperature inversion (normalized by the maximum inversion during the night) weakly declines with increasing wind speed. The observed growth rate is quantitatively consistent among the sites, and it appears insensitive to various other parameters. The results were also insensitive to the afternoon decay rate of the net radiation except when this decay rate was very weak. These observations are compared to numerical solutions of three models with increasing complexity: a bulk model, an idealized single-column model (SCM), and an operational-level SCM. It appears only the latter could reproduce qualitative features of the observations using a first-order closure. Moreover, replacing this closure with a prognostic TKE scheme substantially improved the quantitative performance. This suggests that idealized models assuming instantaneous equilibrium flux-profile relations may not aid in understanding this period, since history effects may qualitatively affect the dynamics.
Abstract
A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes or feedbacks due to soil and radiative heat transfer are accounted for by a “lumped parameter closure,” which represents the “coupling strength” of the system.
Observations from Cabauw, Netherlands, and Dome C, Antarctica, are analyzed. As expected, inversions are weak for strong winds, whereas large inversions are found under weak-wind conditions. However, a sharp transition is found between those regimes, as it occurs within a narrow wind range. This results in a typical S-shaped dependency. The conceptual model explains why this characteristic must be a robust feature. Differences between the Cabauw and Dome C cases are explained from differences in coupling strength (being weaker in the Antarctic). For comparison, a realistic column model is run. As findings are similar to the simple model and the observational analysis, it suggests generality of the results.
Theoretical analysis reveals that, in the transition zone near the critical wind speed, the response time of the system to perturbations becomes large. As resilience to perturbations becomes weaker, it may explain why, within this wind regime, an increase of scatter is found. Finally, the so-called heat flux duality paradox is analyzed. It is explained why numerical simulations with prescribed surface fluxes show a dynamical response different from more realistic surface-coupled systems.
Abstract
A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes or feedbacks due to soil and radiative heat transfer are accounted for by a “lumped parameter closure,” which represents the “coupling strength” of the system.
Observations from Cabauw, Netherlands, and Dome C, Antarctica, are analyzed. As expected, inversions are weak for strong winds, whereas large inversions are found under weak-wind conditions. However, a sharp transition is found between those regimes, as it occurs within a narrow wind range. This results in a typical S-shaped dependency. The conceptual model explains why this characteristic must be a robust feature. Differences between the Cabauw and Dome C cases are explained from differences in coupling strength (being weaker in the Antarctic). For comparison, a realistic column model is run. As findings are similar to the simple model and the observational analysis, it suggests generality of the results.
Theoretical analysis reveals that, in the transition zone near the critical wind speed, the response time of the system to perturbations becomes large. As resilience to perturbations becomes weaker, it may explain why, within this wind regime, an increase of scatter is found. Finally, the so-called heat flux duality paradox is analyzed. It is explained why numerical simulations with prescribed surface fluxes show a dynamical response different from more realistic surface-coupled systems.