Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Aronne J. Merrelli x
- Refine by Access: All Content x
Abstract
The Polar Radiant Energy in the Far InfraRed Experiment (PREFIRE) mission will measure the Earth’s emission at wavelengths ranging from 3-54 µm. The pre-launch clear-sky retrieval algorithm, evaluated with simulated test data, indicates that PREFIRE measurements will be valuable for retrieving atmospheric water vapor and temperature profiles. Far infrared measurements provide unique retrieval information, indicated by the high ranking of select FIR channels as primary contributors to the total degrees of freedom for signal (DFS). In utilizing all the PREFIRE channels, the average total DFS of 4 test regions ranges from 1.90 - 4.71. The information content increases with higher column water vapor and in the presence of near surface temperature inversions. Using the DFS profiles for guidance, the retrieval concentrates information into 7 distinct layers to reduce the retrieval uncertainty per layer. Sensitivity tests indicate forward model error due to surface emissivity uncertainty results in about a 9% increase in column water vapor uncertainty. The clear-sky retrieval is sensitive to the presence of undetected ice clouds, especially those with optical depths larger than 0.2. Hence, in addition to a separate PREFIRE cloud mask, optimal estimation retrieval metrics are explored as possible indicators of cloudy scenes.
Abstract
The Polar Radiant Energy in the Far InfraRed Experiment (PREFIRE) mission will measure the Earth’s emission at wavelengths ranging from 3-54 µm. The pre-launch clear-sky retrieval algorithm, evaluated with simulated test data, indicates that PREFIRE measurements will be valuable for retrieving atmospheric water vapor and temperature profiles. Far infrared measurements provide unique retrieval information, indicated by the high ranking of select FIR channels as primary contributors to the total degrees of freedom for signal (DFS). In utilizing all the PREFIRE channels, the average total DFS of 4 test regions ranges from 1.90 - 4.71. The information content increases with higher column water vapor and in the presence of near surface temperature inversions. Using the DFS profiles for guidance, the retrieval concentrates information into 7 distinct layers to reduce the retrieval uncertainty per layer. Sensitivity tests indicate forward model error due to surface emissivity uncertainty results in about a 9% increase in column water vapor uncertainty. The clear-sky retrieval is sensitive to the presence of undetected ice clouds, especially those with optical depths larger than 0.2. Hence, in addition to a separate PREFIRE cloud mask, optimal estimation retrieval metrics are explored as possible indicators of cloudy scenes.
Abstract
Presented are four winter seasons of data from an enhanced precipitation instrument suite based at the National Weather Service (NWS) Office in Marquette (MQT), Michigan (250–500 cm of annual snow accumulation). In 2014 the site was augmented with a Micro Rain Radar (MRR) and a Precipitation Imaging Package (PIP). MRR observations are utilized to partition large-scale synoptically driven (deep) and surface-forced (shallow) snow events. Coincident PIP and NWS MQT meteorological surface observations illustrate different characteristics with respect to snow event category. Shallow snow events are often extremely shallow, with MRR-indicated precipitation heights of less than 1500 m above ground level. Large vertical reflectivity gradients indicate efficient particle growth, and increased boundary layer turbulence inferred from observations of spectral width implies increased aggregation in shallow snow events. Shallow snow events occur 2 times as often as deep events; however, both categories contribute approximately equally to estimated annual accumulation. PIP measurements reveal distinct regime-dependent snow microphysical differences, with shallow snow events having broader particle size distributions and comparatively fewer small particles and deep snow events having narrower particle size distributions and comparatively more small particles. In addition, coincident surface meteorological measurements indicate that most shallow snow events are associated with surface winds originating from the northwest (over Lake Superior), cold temperatures, and relatively high surface pressures, which are characteristics that are consistent with cold-air outbreaks. Deep snow events have meteorologically distinct conditions that are accordant with midlatitude cyclones and frontal structures, with mostly southwest surface winds, warmer temperatures approaching freezing, and lower surface pressures.
Abstract
Presented are four winter seasons of data from an enhanced precipitation instrument suite based at the National Weather Service (NWS) Office in Marquette (MQT), Michigan (250–500 cm of annual snow accumulation). In 2014 the site was augmented with a Micro Rain Radar (MRR) and a Precipitation Imaging Package (PIP). MRR observations are utilized to partition large-scale synoptically driven (deep) and surface-forced (shallow) snow events. Coincident PIP and NWS MQT meteorological surface observations illustrate different characteristics with respect to snow event category. Shallow snow events are often extremely shallow, with MRR-indicated precipitation heights of less than 1500 m above ground level. Large vertical reflectivity gradients indicate efficient particle growth, and increased boundary layer turbulence inferred from observations of spectral width implies increased aggregation in shallow snow events. Shallow snow events occur 2 times as often as deep events; however, both categories contribute approximately equally to estimated annual accumulation. PIP measurements reveal distinct regime-dependent snow microphysical differences, with shallow snow events having broader particle size distributions and comparatively fewer small particles and deep snow events having narrower particle size distributions and comparatively more small particles. In addition, coincident surface meteorological measurements indicate that most shallow snow events are associated with surface winds originating from the northwest (over Lake Superior), cold temperatures, and relatively high surface pressures, which are characteristics that are consistent with cold-air outbreaks. Deep snow events have meteorologically distinct conditions that are accordant with midlatitude cyclones and frontal structures, with mostly southwest surface winds, warmer temperatures approaching freezing, and lower surface pressures.
Abstract
A multisensor snowfall observational suite has been deployed at the Marquette, Michigan, National Weather Service Weather Forecast Office (KMQT) since 2014. Micro Rain Radar (MRR; profiling radar), Precipitation Imaging Package (PIP; snow particle imager), and ancillary ground-based meteorological observations illustrate the unique capabilities of these combined instruments to document radar and concomitant microphysical properties associated with northern Great Lakes snowfall regimes. Lake-effect, lake-orographic, and transition event case studies are presented that illustrate the variety of snowfall events that occur at KMQT. Case studies and multiyear analyses reveal the ubiquity of snowfall produced by shallow events. These shallow snowfall features and their distinctive microphysical fingerprints are often difficult to discern with conventional remote sensing instruments, thus highlighting the scientific and potential operational value of MRR and PIP observations. The importance of near-surface lake-orographic snowfall enhancement processes in extreme snowfall events and regime-dependent snow particle microphysical variability controlled by regime and environmental factors are also highlighted.
Abstract
A multisensor snowfall observational suite has been deployed at the Marquette, Michigan, National Weather Service Weather Forecast Office (KMQT) since 2014. Micro Rain Radar (MRR; profiling radar), Precipitation Imaging Package (PIP; snow particle imager), and ancillary ground-based meteorological observations illustrate the unique capabilities of these combined instruments to document radar and concomitant microphysical properties associated with northern Great Lakes snowfall regimes. Lake-effect, lake-orographic, and transition event case studies are presented that illustrate the variety of snowfall events that occur at KMQT. Case studies and multiyear analyses reveal the ubiquity of snowfall produced by shallow events. These shallow snowfall features and their distinctive microphysical fingerprints are often difficult to discern with conventional remote sensing instruments, thus highlighting the scientific and potential operational value of MRR and PIP observations. The importance of near-surface lake-orographic snowfall enhancement processes in extreme snowfall events and regime-dependent snow particle microphysical variability controlled by regime and environmental factors are also highlighted.
Abstract
Earth’s climate is strongly influenced by energy deficits at the poles that emit more thermal energy than they receive from the sun. Energy exchanges between the surface and atmosphere influence the local environment while heat transport from lower latitudes drives midlatitude atmospheric and oceanic circulations. In the Arctic, in particular, local energy imbalances induce strong seasonality in surface–atmosphere heat exchanges and an acute sensitivity to forced climate variations. Despite these important local and global influences, the largest contributions to the polar atmospheric and surface energy budgets have not been fully characterized. The spectral variation of far-infrared radiation that makes up 60% of polar thermal emission has never been systematically measured impeding progress toward consensus in predicted rates of Arctic warming, sea ice decline, and ice sheet melt. Enabled by recent advances in sensor miniaturization and CubeSat technology, the Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will document, for the first time, the spectral, spatial, and temporal variations of polar far-infrared emission. Selected under NASA’s Earth Ventures Instrument (EVI) program, PREFIRE will utilize new lightweight, low-power, ambient temperature detectors capable of measuring at wavelengths up to 50 μm to quantify Earth’s far-infrared spectrum. Estimates of spectral surface emissivity, water vapor, cloud properties, and the atmospheric greenhouse effect derived from these measurements offer the potential to advance our understanding of the factors that modulate thermal fluxes in the cold, dry conditions characteristic of the polar regions.
Abstract
Earth’s climate is strongly influenced by energy deficits at the poles that emit more thermal energy than they receive from the sun. Energy exchanges between the surface and atmosphere influence the local environment while heat transport from lower latitudes drives midlatitude atmospheric and oceanic circulations. In the Arctic, in particular, local energy imbalances induce strong seasonality in surface–atmosphere heat exchanges and an acute sensitivity to forced climate variations. Despite these important local and global influences, the largest contributions to the polar atmospheric and surface energy budgets have not been fully characterized. The spectral variation of far-infrared radiation that makes up 60% of polar thermal emission has never been systematically measured impeding progress toward consensus in predicted rates of Arctic warming, sea ice decline, and ice sheet melt. Enabled by recent advances in sensor miniaturization and CubeSat technology, the Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will document, for the first time, the spectral, spatial, and temporal variations of polar far-infrared emission. Selected under NASA’s Earth Ventures Instrument (EVI) program, PREFIRE will utilize new lightweight, low-power, ambient temperature detectors capable of measuring at wavelengths up to 50 μm to quantify Earth’s far-infrared spectrum. Estimates of spectral surface emissivity, water vapor, cloud properties, and the atmospheric greenhouse effect derived from these measurements offer the potential to advance our understanding of the factors that modulate thermal fluxes in the cold, dry conditions characteristic of the polar regions.