Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Aurore Voldoire x
  • Refine by Access: All Content x
Clear All Modify Search
Mathieu Joly and Aurore Voldoire

Abstract

A significant part of the West African monsoon (WAM) interannual variability can be explained by the remote influence of El Niño–Southern Oscillation (ENSO). Whereas the WAM occurs in the boreal summer, ENSO events generally peak in late autumn. Statistics show that, in the observations, the WAM is influenced either during the developing phase of ENSO or during the decay of some long-lasting La Niña events. The timing of ENSO thus seems essential to the teleconnection process. Composite maps for the developing ENSO illustrate the large-scale mechanisms of the teleconnection. The most robust features are a modulation of the Walker circulation and a Kelvin wave response in the high troposphere.

In the Centre National de Recherches Météorologiques Coupled Global Climate Model, version 3 (CNRM-CM3), the teleconnection occurs unrealistically at the end of ENSO events. An original sensitivity experiment is presented in which the ocean component is forced with a reanalyzed wind stress over the tropical Pacific. This allows for the reproduction of the observed ENSO chronology in the coupled simulation. In CNRM-CM3, the atmospheric response to ENSO is slower than in the reanalysis data, so the influence on the WAM is delayed by a year.

The two principal features of the teleconnection are the timing of ENSO onsets and the time lag of the atmospheric response. Both are assessed separately in 16 twentieth-century simulations of the third phase of the Coupled Model Intercomparison Project (CMIP3). The temporal aspects of the ENSO teleconnection are reproduced with difficulty in state-of-the-art coupled models. Only four models simulate an impact of ENSO on the WAM during the developing phase.

Full access
Robin Waldman, Joël Hirschi, Aurore Voldoire, Christophe Cassou, and Rym Msadek

Abstract

This work aims to clarify the relation between the Atlantic meridional overturning circulation (AMOC) and the thermal wind. We derive a new and generic dynamical AMOC decomposition that expresses the thermal wind transport as a simple vertical integral function of eastern minus western boundary densities. This allows us to express density anomalies at any depth as a geostrophic transport in Sverdrups (1 Sv ≡ 106 m3 s−1) per meter and to predict that density anomalies around the depth of maximum overturning induce most AMOC transport. We then apply this formalism to identify the dynamical drivers of the centennial AMOC variability in the CNRM-CM6 climate model. The dynamical reconstruction and specifically the thermal wind component explain over 80% of the low-frequency AMOC variance at all latitudes, which is therefore almost exclusively driven by density anomalies at both zonal boundaries. This transport variability is dominated by density anomalies between depths of 500 and 1500 m, in agreement with theoretical predictions. At those depths, southward-propagating western boundary temperature anomalies induce the centennial geostrophic AMOC transport variability in the North Atlantic. They are originated along the western boundary of the subpolar gyre through the Labrador Sea deep convection and the Davis Strait overflow.

Open access
Matthew D. Thomas, Anne-Marie Tréguier, Bruno Blanke, Julie Deshayes, and Aurore Voldoire

Abstract

Large differences in the Atlantic meridional overturning circulation (AMOC) exhibited between the available ocean models pose problems as to how they can be interpreted for climate policy. A novel Lagrangian methodology has been developed for use with ocean models that enables a decomposition of the AMOC according to its source waters of subduction from the mixed layer of different geographical regions. The method is described here and used to decompose the AMOC of the Centre National de Recherches Météorologiques (CNRM) ocean model, which is approximately 4.5 Sv (1 Sv = 106 m3 s−1) too weak at 26°N, compared to observations. Contributions from mixed layer subduction to the peak AMOC at 26°N in the model are dominated by the Labrador Sea, which contributes 7.51 Sv; but contributions from the Nordic seas, the Irminger Sea, and the Rockall basin are also important. These waters mostly originate where deep mixed layers border the topographic slopes of the Subpolar Gyre and Nordic seas. The too-weak model AMOC can be explained by weak model representations of the overflow and of Irminger Sea subduction. These are offset by the large Labrador Sea component, which is likely to be too strong as a result of unrealistically distributed and too-deep mixed layers near the shelf.

Full access
Virginie Guemas, David Salas-Mélia, Masa Kageyama, Hervé Giordani, and Aurore Voldoire

Abstract

This study investigates the nonlinear processes by which the ocean diurnal variations can affect the intraseasonal sea surface temperature (SST) variability in the Atlantic Ocean. The Centre National de Recherches Météorologiques one-dimensional ocean model (CNRMOM1D) is forced with the 40-yr ECMWF Re-Analysis (ERA-40) surface fluxes with a 1-h frequency in solar heat flux in a first simulation and with a daily forcing frequency in a second simulation. This model has a vertical resolution of 1 m near the surface. The comparison between both experiments shows that the daily mean surface temperature is modified by about 0.3°–0.5°C if the ocean diurnal variations are represented, and this correction can persist for 15–40 days in the midlatitudes and more than 60 days in the tropics. The so-called rectification mechanism, by which the ocean diurnal warming enhances the intraseasonal SST variability by 20%–40%, is found to be robust in the tropics. In contrast, in the midlatitudes, diurnal variations in wind stress and nonsolar heat flux are shown to affect the daily mean SST. For example, an intense wind stress or nonsolar heat flux toward the atmosphere during the first half of the day followed by weak fluxes during the second half result in a shallow mixed layer. The following day, the preconditioning results in heat being trapped near the surface and the daily mean surface temperature being higher than if these diurnal variations in surface forcings were not resolved.

Full access
Matthieu Chevallier, David Salas y Mélia, Aurore Voldoire, Michel Déqué, and Gilles Garric

Abstract

An ocean–sea ice model reconstruction spanning the period 1990–2009 is used to initialize ensemble seasonal forecasts with the Centre National de Recherches Météorologiques Coupled Global Climate Model version 5.1 (CNRM-CM5.1) coupled atmosphere–ocean general circulation model. The aim of this study is to assess the skill of fully initialized September and March pan-Arctic sea ice forecasts in terms of climatology and interannual anomalies. The predictions are initialized using “full field initialization” of each component of the system. In spite of a drift due to radiative biases in the coupled model during the melt season, the full initialization of the sea ice cover on 1 May leads to skillful forecasts of the September sea ice extent (SIE) anomalies. The skill of the prediction is also significantly high when considering anomalies of the SIE relative to the long-term linear trend. It confirms that the anomaly of spring sea ice cover in itself plays a role in preconditioning a September SIE anomaly. The skill of predictions for March SIE initialized on 1 November is also encouraging, and it can be partly attributed to persistent features of the fall sea ice cover. The present study gives insight into the current ability of state-of-the-art coupled climate systems to perform operational seasonal forecasts of the Arctic sea ice cover up to 5 months in advance.

Full access
Yann Y. Planton, Eric Guilyardi, Andrew T. Wittenberg, Jiwoo Lee, Peter J. Gleckler, Tobias Bayr, Shayne McGregor, Michael J. McPhaden, Scott Power, Romain Roehrig, Jérôme Vialard, and Aurore Voldoire

Abstract

El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate variability on the planet, with far-reaching global impacts. It is therefore key to evaluate ENSO simulations in state-of-the-art numerical models used to study past, present, and future climate. Recently, the Pacific Region Panel of the International Climate and Ocean: Variability, Predictability and Change (CLIVAR) Project, as a part of the World Climate Research Programme (WCRP), led a community-wide effort to evaluate the simulation of ENSO variability, teleconnections, and processes in climate models. The new CLIVAR 2020 ENSO metrics package enables model diagnosis, comparison, and evaluation to 1) highlight aspects that need improvement; 2) monitor progress across model generations; 3) help in selecting models that are well suited for particular analyses; 4) reveal links between various model biases, illuminating the impacts of those biases on ENSO and its sensitivity to climate change; and to 5) advance ENSO literacy. By interfacing with existing model evaluation tools, the ENSO metrics package enables rapid analysis of multipetabyte databases of simulations, such as those generated by the Coupled Model Intercomparison Project phases 5 (CMIP5) and 6 (CMIP6). The CMIP6 models are found to significantly outperform those from CMIP5 for 8 out of 24 ENSO-relevant metrics, with most CMIP6 models showing improved tropical Pacific seasonality and ENSO teleconnections. Only one ENSO metric is significantly degraded in CMIP6, namely, the coupling between the ocean surface and subsurface temperature anomalies, while the majority of metrics remain unchanged.

Full access
Belen Rodríguez-Fonseca, Elsa Mohino, Carlos R. Mechoso, Cyril Caminade, Michela Biasutti, Marco Gaetani, J. Garcia-Serrano, Edward K. Vizy, Kerry Cook, Yongkang Xue, Irene Polo, Teresa Losada, Leonard Druyan, Bernard Fontaine, Juergen Bader, Francisco J. Doblas-Reyes, Lisa Goddard, Serge Janicot, Alberto Arribas, William Lau, Andrew Colman, M. Vellinga, David P. Rowell, Fred Kucharski, and Aurore Voldoire

Abstract

The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface–atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

Full access