Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: B. Bonnel x
  • Refine by Access: All Content x
Clear All Modify Search
Y. Fouquart, B. Bonnel, M. Chaoui Roquai, R. Santer, and A. Cerf

Abstract

A series of ground-based and airborne observations of desert aerosols, the ECLATS experiment was carried out in December 1980 in the vicinity of Niamey (Niger). This paper deals with aerosol optical thicknesses and size distributions derived from (i) in situ measurements using singe particle optical counters (a Kratel and a Knollenberg FSSP), (ii) a ground-based cascade impactor, and (iii) ground-based measurements of the spectral variation of the sober extinction.

During the experiment, aerosol optical thicknesses (at 550 nm) varied from 0.20 on very clear days to 1.5 during a so-called “dry haze” episode.

Comparisons between size distributions derived from in situ measurements from ground-based cascade impactor, and from inversion of the spectral optical thicknesses, showed that the optical counters drastically underestimated the concentration of small (r<0.5 μm) particles It was shown that the occurrence of a “dry haze” episode was characterized by a large increase (an order of magnitude in this particular case) of the intermediate particles (r≅0.5 μm), whereas the concentration in very (r<0.2 μm) and large (r>1 μm) particles remained roughly constant.

Full access
Y. Fouquart, B. Bonnel, G. Brogniez, J. C. Buriez, L. Smith, J. J. Morcrette, and A. Cerf

Abstract

The results presented in this paper are a part of those obtained during the ECLATS experiment The broadband radiative characteristics of the Sahelian aerosol layer and the vertical radiative flux divergence within the dust layer were determined both from in situ measurements and Mie calculations.

In situ measurements of the aerosol layer's reflectances and transmittances of solar radiation led to aerosol single-scattering albedos close to ωA∼0.95. Measurements of the 8–14 μm radiances led to an optied depth by unit of volume of dust in a vertical column C A∼0.34 μm−1. Mie calculations assuming the aerosol refractive index published by Carlson and Benjamin for solar radiation and that measured by Volz for the atmospheric window, showed good agreement with observations. The ratio of infrared to visible optical thickness was δA(8–14 μm)/δA (0.55 μm)∼0.1, instead of 0.3 as calculated by Carlson and Benjamin. This discrepancy is attributable to differences in size distributions assumed.

The radiative budget of the Sahelian aerosol layer was determined for clear and dusty conditions. The additional aerosol shortwave heating was as much as 5 K day−1 for δA(0.55 μm) = 1.5 and with the sun overhead, whereas the additional cooling was close to 1 K day−1. As a consequence of the large temperature discontinuity at the surface, important infrared heating at the surface layer was observed.

The rather large differences between the aerosol optical properties reported here and those previously reported in the literature are due to different aerosol size distributions; therefore the present paper stresses the importance of careful determination of the size distributions.

Full access
H. W. Barker, G. L. Stephens, P. T. Partain, J. W. Bergman, B. Bonnel, K. Campana, E. E. Clothiaux, S. Clough, S. Cusack, J. Delamere, J. Edwards, K. F. Evans, Y. Fouquart, S. Freidenreich, V. Galin, Y. Hou, S. Kato, J. Li, E. Mlawer, J.-J. Morcrette, W. O'Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood, and F. Yang

Abstract

The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?

One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15–25 W m–2 at overhead sun for the standard tropical atmosphere regardless of clouds.

Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for the clear and overcast cases. The majority of 1D codes fall into the extreme category of maximum/random overlap of PPH clouds and thus generally disagree with full 3D benchmark values. Given the fairly limited scope of these tests and the inability of any one code to perform extremely well for all cases begs the question that a paradigm shift is due for modeling 1D solar fluxes for cloudy atmospheres.

Full access