Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Bart J. Wolf x
  • Refine by Access: All Content x
Clear All Modify Search
Bart J. Wolf and Donald R. Johnson

Abstract

A kinetic energy (KE) analysis of the forcing of a mesoscale upper-tropospheric jet streak by organized diabaaic processes within the simulated convective system (SCS) that was discussed in Part I is presented in this study. The relative contributions of the ageostrophic components of motion to the generation of KE of the convectively generated jet streak are compared, along with the KE generation by the rotational (nondivergent) and irrotational (divergent) mass transport. The sensitivity of the numerical simulations of SCS development to resolution is also briefly examined. Analysis within isentropic coordinates provides for an explicit determination of the influence of dramatic processes on the generation of KE.

The upper-level production of specific KE is due predominantly to the inertial advective ageostrophic component (IAD), and as such represents the primary process through which the KE of the convectively generated jet streak is realized. A secondary contribution by the inertial diabatic (IDI) term is observed. Partitioning the KE generation into its rotational and irrotational components reveals that the latter, which is directly linked to the diabatic heating within the SCS through isentropic continuity requirements, is the ultimate source of KE generation as the global area integral of generation by the rotational component vanishes. Comparison with an identical dry simulation reveals that the net generation of KE must be attributed to latent beating. Both the IAD and IDI ageostrophic components play important roles in this regard.

Examination of results frown simulations conducted at several resolutions supports the previous findings in that the effects of diabatic processes and ageostrophic motion on KE generation remain consistent. Resolution does impact the location and timing of SCS development, a result that has important implications in forecasting the onset of convection that develops from evolution of the large-scale flow and moisture transport. Marked differences are observed in the momentum field aloft subsequent to the lift cycle of the SCS in the 1°, 30-level base case (MP130) simulation discussed in Part I versus its 2° counterparts in that the MP130 simulation with higher spatial resolution contains from 14% to 30% more total KE.

Full access
Bart J. Wolf and Donald R. Johnson

Abstract

The mutual forcing of a midlatitude upper-tropospheric jet streak by organized mesoscale adiabatic and diabatic processes within a simulated convective system (SCS) is investigated. Using isentropic diagnostics, results from a three-dimensional numerical simulation of an SCS are examined to study the isallobaric flow field, modes of dominant ageostrophic motion, and stability changes in relation to the mutual interdependence of adiabatic processes and latent heat release. Isentropic analysis affords an explicit isolation of a component of isallobaric flow associated with diabatic processes within the SCS.

Prior to convective development within the simulation, atmospheric destabilization occurs through adiabatic ageostrophic mass adjustment and low-level convergence in association with the preexisting synoptic-scale upper-tropospheric jet streak. The SCS develops in a baroclinic zone and quickly initiates a vigorous mass circulation. By the mature stage, a pronounced vertical couplet of low-level convergence and upper-level mass divergence is established, linked by intense midtroposphoric diabatic heating. Significant divergence persists aloft for several hours subsequent to SCS decay. The dominant mode of ageostrophic motion within which the low-level mass convergence develops is the adiabatic isallobaric component, while the mass divergence aloft develops principally through the diabatic isallobaric component. Both components are intrinsically linked to the convectively forced vertical mass transport.

The inertial diabatic ageostropiiic component is largest near the level of maximum heating and is responsible for the development of inertial instability to the north of the SCS, resulting in this quadrant being preferred for outflow. The inertial advective component, the dominant term that produces the new downstream wind maximum, rapidly develops north of the SCS and through mutual adjustment creates the baroclinic support for the new jet streak.

The results establish the synergistic relationship between the synoptic and mesoscale ageostrophic flow in the organization and maintenance of the SCS, as well as in the subsequent three-dimensional modification of the environmental flow field. The findings reinforce the need for operational models to accurately and explicitly simulate the effects of organized midlatitude convection on the larger-scale environment.

Full access
Donald R. Johnson, Tom H. Zapotocny, Fred M. Reames, Bart J. Wolf, and R. Bradley Pierce

Abstract

The primary objectives of this study are threefold: 1) to compare simulators of dry and moist baroclinic development from 10-and 22-layer hybrid isentropic-sigma coordinate models with those from 11-, 27-, and 35-layer sigma coordinate models; 2) to examine the ability of the models to transport water vapor and simulate equivalent potential temperature θe; and 3) to compare predictions of the timing, location, and amount of precipitation. A model's capability to predict precipitation sterns from the accuracy of its simulation of the joint distribution of mass, potential temperature, and water vapor throughout the model domain. In a series of experiments to compare simulations of precipitation, several analytic distributions of water vapor are specified initially. The water vapor distributions include a “cylinder”extending vertically throughout the atmosphere and “lenses” within isentropic, sigma, and isobaric layers. The effect of increased horizontal resolution are also studied.

Results indicate that when the relative humidity is vertically uniform through a substantial extent of the atmosphere, all the models produce very similar precipitation distributions. However, when water vapor is confined to relatively shallow layers, the ability of the sigma coordinate models to simulate the timing, location, and amount of precipitation is severely compromised. Furthermore, the 10-layer hybrid model conserves θe to a higher degree of accuracy and simulates a more realistic evolution of precipitation even when compared to results from sigma models with increased vertical and horizontal resolution. In all instances, the experiments demonstrate that advantages reside in prediction of precipitation with the hybrid model. Both theoretical and conceptual bases for thew differences are provided.

Full access
R. Bradley Pierce, Fred M. Reames, Tom H. Zapotocny, Donald R. Johnson, and Bart J. Wolf

Abstract

In a validation experiment of a hybrid isentropic–sigma coordinate primitive equation model developed at the University of Wisconsin (the UW θσ model), an initial value technique is used to investigate numerically the normal-mode characteristics of baroclinically amplifying disturbances over a spectrum of meteorologically significant wavelength. The experiments are designed to determine the impact of coupling an isentropic-coordinate free atmospheric domain to a sigma-coordinate planetary boundary layer (PBL) on the normal-mode characteristics. The growth rate and phase speed spectra of the most unstable normal modes are obtained for an analytically prescribed zonal flow field. The evolution and vertical structure of the kinetic energy, energy conversions, growth rates, and geopotential fields are investigated.

Several modifications have been made to earlier versions of the UW θσ model to overcome noise introduced by adjustments associated with emerging and submerging grid volumes at the sigma–isentropic interface. With these modifications, the hybrid model accurately simulates the evolution and structure of normal-mode baroclinic disturbances for all wavenumbers considered except for wavenumber two. The normal-mode growth rate and phase speed spectra compare well with previous studies using standard sigma coordinate models. There is no evidence of aliasing the baroclinic normal-mode characteristics due to the coupling of isentropic and sigma domains.

Full access
Tom H. Zapotocny, Fred M. Reames, R. Bradley Pierce, Donald R. Johnson, and Bart J. Wolf

Abstract

The main goals of this paper are 1) to demonstrate the feasibility of incorporating a prognostic equation for water vapor and diabatic processes in the University of Wisconsin θσ model discussed in Part I, 2) to document methods applied to overcome difficulties stemming from the inclusion of moist processes and 3) to present results illustrating the effects of latent heat release on baroclinic development. The results confirm earlier studies that a prognostic equation for water vapor and the diabatic component of latent heat release may be included in a hybrid model. However, the modifications made in this study were important for eliminating spurious supersaturation and release of latent heat within grid volumes emerging and submerging through the interface between sigma and isentropic model domains. The results demonstrate the hybrid model's robust nature and potential for use in prediction.

For this demonstration, model simulations of an analytically specified synoptic-scale wave that amplified baroclinically under dry and moist conditions are compared. Simulations with and without a hydrological component show that the overall effect of latent heat release is to markedly enhance cyclo- and frontogenesis. The resultant pattern of precipitation is coherent, and the structure of the developing wave is consistent with the concepts of self-development. No detrimental effects are evident in either the structure or processes resulting from the inclusion of moist processes and the presence of an interface between sigma and isentropic model domains.

Full access