Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Belay B. Demoz x
  • All content x
Clear All Modify Search
Zhien Wang, Kenneth Sassen, David N. Whiteman, and Belay B. Demoz

Abstract

Mixed-phase clouds are still poorly understood, though studies have indicated that their parameterization in general circulation models is critical for climate studies. Most of the knowledge of mixed-phase clouds has been gained from in situ measurements, but reliable remote sensing algorithms to study mixed-phase clouds extensively are lacking. A combined active and passive remote sensing approach for studying supercooled altocumulus with ice virga, using multiple remote sensor observations, is presented. Precipitating altocumulus clouds are a common type of mixed-phase clouds, and their easily identifiable structure provides a simple scenario to study mixed-phase clouds. First, ice virga is treated as an independent ice cloud, and an existing lidar–radar algorithm to retrieve ice water content and general effective size profiles is applied. Then, a new iterative approach is used to retrieve supercooled water cloud properties by minimizing the difference between atmospheric emitted radiance interferometer (AERI)–observed radiances and radiances, calculated using the discrete-ordinate radiative transfer model at 12 selected wavelengths. Case studies demonstrate the capabilities of this approach in retrieving radiatively important microphysical properties to characterize this type of mixed-phase cloud. The good agreement between visible optical depths derived from lidar measurement and those estimated from retrieved liquid water path and effective radius provides a closure test for the accuracy of mainly AERI-based supercooled water cloud retrieval.

Full access
Belay B. Demoz, Renyi Zhang, and Richard L. Pitter

Abstract

Systematic observations of the sizes, shapes, and degrees of riming of ice particles falling at a downwind station of a major mountain barrier are presented. The observational station was equipped to measure ice-particle masses from 1 µg to a few milligrams, and to measure ice-particle dimensions, habits, degrees of riming, and degrees of aggregation. The results are shown to be useful in learning where ice nucleation and growth take place in the cloud system.

The present study analyzed dissipating and developing winter orographic storm systems, which are representative of more than 60% of the storms observed over the study region. It suggests that most of the needles and columns observed at the ground may be formed by secondary ice production. Heavy riming was associated with light precipitation, while high precipitation rates were correlated with a high number fraction of aggregate crystals. Aggregation was found to be important in the process of precipitation development and the aggregate mass was mostly contained in the dendritic crystal growth region.

Full access
Belay B. Demoz, Arlen W. Huggins, Joseph A. Warburton, and Richard L. Smith

Abstract

In the winter of 1986, two microwave radiometers were operated side by side at a high-altitude weather observation site in the central Sierra Nevada for the purpose of comparing measurements in a variety of ambient weather conditions. The instruments continuously recorded measurements of vertically integrated water vapor and liquid water during storms affecting the area. One radiometer was designed with a spinning reflector to shed precipitation particles while the other radiometer's reflector was fixed. Temporal records of the data show periods of wet weather contamination for the fixed reflector radiometer. The absence (presence) of these contaminated periods is mainly explained by the difference in the design of the radiometers. These contaminated periods led to larger standard deviation in the data from the fixed-reflector radiometer and lower correlation coefficients between the two instruments. Correlation coefficients of 0.83 for the liquid and 0.68 for the vapor values were found for the radiometer-radiometer comparisons. When some of the points suspected of contamination were removed, the correlation coefficients improved to 0.87 and 0.71 for the liquid and vapor channels, respectively. The standard deviations were 0.1 mm and 0.12 cm for the liquid and vapor channels, respectively, of the spinning reflector radiometer. For the fixed-reflector design radiometer, a standard deviation of 0.1 mm for the liquid and 0.26 cm for the vapor was found. Comparison of radiometer vapor and rawinsonde precipitable water resulted in a correlation coefficient of 0.97 for the spinning-reflector radiometer and 0.8 for the fixed-reflector radiometer.

Full access
Brian J. Carroll, Belay B. Demoz, David D. Turner, and Ruben Delgado

Abstract

The 2015 Plains Elevated Convection at Night (PECAN) field campaign provided a wealth of intensive observations for improving understanding of interplay between the Great Plains low-level jet (LLJ), mesoscale convective systems (MCSs), and other phenomena in the nocturnal boundary layer. This case study utilizes PECAN ground-based Doppler and water vapor lidar and airborne water vapor lidar observations for a detailed examination of water vapor transport in the Great Plains. The chosen case, 11 July 2015, featured a strong LLJ that helped sustain an MCS overnight. The lidars resolved boundary layer moisture being transported northward, leading to a large increase in water vapor in the lowest several hundred meters above the surface in northern Kansas. A branch of nocturnal convection initiated coincident with the observed maximum water vapor flux. Radiosondes confirmed an increase in convective potential within the LLJ layer. Moist static energy (MSE) growth was generated by increasing moisture in spite of a temperature decrease in the LLJ layer. This unique dataset is also used to evaluate the Rapid Refresh (RAP) analysis model performance, comparing model output against the continuous lidar profiles of water vapor and wind. While the RAP analysis captured the large-scale trends, errors in water vapor mixing ratio were found ranging from 0 to 2 g kg−1 at the ground-based lidar sites. Comparison with the airborne lidar throughout the PECAN domain yielded an RMSE of 1.14 g kg−1 in the planetary boundary layer. These errors mostly manifested as contiguous dry or wet regions spanning spatial scales on the order of ten to hundreds of kilometers.

Restricted access
Tammy M. Weckwerth, David B. Parsons, Steven E. Koch, James A. Moore, Margaret A. LeMone, Belay B. Demoz, Cyrille Flamant, Bart Geerts, Junhong Wang, and Wayne F. Feltz

The International H2O Project (IHOP_2002) is one of the largest North American meteorological field experiments in history. From 13 May to 25 June 2002, over 250 researchers and technical staff from the United States, Germany, France, and Canada converged on the Southern Great Plains to measure water vapor and other atmospheric variables. The principal objective of IHOP_2002 is to obtain an improved characterization of the time-varying three-dimensional water vapor field and evaluate its utility in improving the understanding and prediction of convective processes. The motivation for this objective is the combination of extremely low forecast skill for warm-season rainfall and the relatively large loss of life and property from flash floods and other warm-season weather hazards. Many prior studies on convective storm forecasting have shown that water vapor is a key atmospheric variable that is insufficiently measured. Toward this goal, IHOP_2002 brought together many of the existing operational and new state-of-the-art research water vapor sensors and numerical models.

The IHOP_2002 experiment comprised numerous unique aspects. These included several instruments fielded for the first time (e.g., reference radiosonde); numerous upgraded instruments (e.g., Wyoming Cloud Radar); the first ever horizontal-pointing water vapor differential absorption lidar (DIAL; i.e., Leandre II on the Naval Research Laboratory P-3), which required the first onboard aircraft avoidance radar; several unique combinations of sensors (e.g., multiple profiling instruments at one field site and the German water vapor DIAL and NOAA/Environmental Technology Laboratory Doppler lidar on board the German Falcon aircraft); and many logistical challenges. This article presents a summary of the motivation, goals, and experimental design of the project, illustrates some preliminary data collected, and includes discussion on some potential operational and research implications of the experiment.

Full access
Andreas Behrendt, Volker Wulfmeyer, Hans-Stefan Bauer, Thorsten Schaberl, Paolo Di Girolamo, Donato Summa, Christoph Kiemle, Gerhard Ehret, David N. Whiteman, Belay B. Demoz, Edward V. Browell, Syed Ismail, Richard Ferrare, Susan Kooi, and Junhong Wang

Abstract

The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the-art water vapor lidar data measured in a field campaign. In this first of two companion papers, intercomparisons between the scanning Raman lidar (SRL) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and two airborne systems are discussed. There are 9 intercomparisons possible between SRL and the differential absorption lidar (DIAL) of Deutsches Zentrum für Luft- und Raumfahrt (DLR), while there are 10 intercomparisons between SRL and the Lidar Atmospheric Sensing Experiment (LASE) of the NASA Langley Research Center. Mean biases of (−0.30 ± 0.25) g kg−1 or −4.3% ± 3.2% for SRL compared to DLR DIAL (DLR DIAL drier) and (0.16 ± 0.31) g kg−1 or 5.3% ± 5.1% for SRL compared to LASE (LASE wetter) in the height range of 1.3–3.8 km above sea level (450–2950 m above ground level at the SRL site) were found. Putting equal weight on the data reliability of the three instruments, these results yield relative bias values of −4.6%, −0.4%, and +5.0% for DLR DIAL, SRL, and LASE, respectively. Furthermore, measurements of the Snow White (SW) chilled-mirror hygrometer radiosonde were compared with lidar data. For the four comparisons possible between SW radiosondes and SRL, an overall bias of (−0.27 ± 0.30) g kg−1 or −3.2% ± 4.5% of SW compared to SRL (SW drier) again for 1.3–3.8 km above sea level was found. Because it is a challenging effort to reach an accuracy of humidity measurements down to the ∼5% level, the overall results are very satisfactory and confirm the high and stable performance of the instruments and the low noise errors of each profile.

Full access
Bart Geerts, David Parsons, Conrad L. Ziegler, Tammy M. Weckwerth, Michael I. Biggerstaff, Richard D. Clark, Michael C. Coniglio, Belay B. Demoz, Richard A. Ferrare, William A. Gallus Jr., Kevin Haghi, John M. Hanesiak, Petra M. Klein, Kevin R. Knupp, Karen Kosiba, Greg M. McFarquhar, James A. Moore, Amin R. Nehrir, Matthew D. Parker, James O. Pinto, Robert M. Rauber, Russ S. Schumacher, David D. Turner, Qing Wang, Xuguang Wang, Zhien Wang, and Joshua Wurman

Abstract

The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access