Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Ben Yang x
  • Refine by Access: All Content x
Clear All Modify Search
Liwei Zou
,
Yun Qian
,
Tianjun Zhou
, and
Ben Yang

Abstract

In this study, the authors calibrated the performance of the Regional Climate Model, version 3 (RegCM3), with the Massachusetts Institute of Technology (MIT)–Emanuel cumulus parameterization scheme over the Coordinated Regional Climate Downscaling Experiment (CORDEX) East Asia domain by tuning seven selected parameters based on the multiple very fast simulated annealing (MVFSA) approach. The seven parameters were selected based on previous studies using RegCM3 with the MIT–Emanuel convection scheme. The results show the simulated spatial pattern of rainfall, and the probability density function distribution of daily rainfall rates is significantly improved in the optimal simulation. Sensitivity analysis suggests that the parameter relative humidity criteria (RHC) has the largest effect on the model results. Followed by an increase of RHC, an increase of total rainfall is found over the northern equatorial western Pacific, mainly contributed by the increase of explicit rainfall. The increases of the convergence of low-level water vapor transport and the associated increases in cloud water favor the increase of explicit rainfall. The identified optimal parameters constrained by total rainfall have positive effects on the low-level circulation and surface air temperature. Furthermore, the optimized parameters based on the chosen extreme case are transferable to a normal case and the model’s new version with a mixed convection scheme.

Full access
Yun Qian
,
Maoyi Huang
,
Ben Yang
, and
Larry K. Berg

Abstract

In this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the Southern Great Plains (SGP) for an extremely dry (2006) and wet (2007) year. The results show that including irrigation reduces model bias in soil moisture and surface latent heat (LH) and sensible heat (SH) fluxes, especially during a dry year. Irrigation adds additional water to the surface, leading to changes in the planetary boundary layer. The increase in soil moisture leads to increases in the surface evapotranspiration and near-surface specific humidity but decreases in the SH and surface temperature. Those changes are local and occur during daytime. There is an irrigation-induced decrease in both the lifting condensation level (Z LCL) and mixed-layer depth. The decrease in Z LCL is larger than the decrease in mixed-layer depth, suggesting an increasing probability of shallow clouds. The simulated changes in precipitation induced by irrigation are highly variable in space, and the average precipitation over the SGP region only slightly increases. A high correlation is found among soil moisture, SH, and Z LCL. Larger values of soil moisture in the irrigated simulation due to irrigation in late spring and summer persist into the early fall, suggesting that irrigation-induced soil memory could last a few weeks to months. The results demonstrate the importance of irrigation parameterization for climate studies and improve the process-level understanding on the role of human activity in modulating land–air–cloud interactions.

Full access
Zhao Yang
,
Francina Dominguez
,
Xubin Zeng
,
Huancui Hu
,
Hoshin Gupta
, and
Ben Yang

Abstract

Irrigation, while being an important anthropogenic factor affecting the local to regional water cycle, is not typically represented in regional climate models. An irrigation scheme is incorporated into the Noah land surface scheme of the Weather Research and Forecasting (WRF) Model that has a calibrated convective parameterization and a tracer package is used to tag and track water vapor. To assess the impact of irrigation over the California Central Valley (CCV) on the regional climate of the U.S. Southwest, simulations are run (for three dry and three wet years) both with and without the irrigation scheme. Incorporation of the irrigation scheme resulted in simulated surface air temperature and humidity that were closer to observations, decreased depth of the planetary boundary layer over the CCV, and increased convective available potential energy. The result was an overall increase in precipitation over the Sierra Nevada range and the Colorado River basin during the summer. Water vapor rising from the irrigated region mainly moved northeastward and contributed to precipitation in Nevada and Idaho. Specifically, the results indicate increased precipitation on the windward side of the Sierra Nevada and over the Colorado River basin. The former is possibly linked to a sea-breeze-type circulation near the CCV, while the latter is likely associated with a wave pattern related to latent heat release over the moisture transport belt.

Full access
Ben-Jei Tsuang
,
Ming-Dah Chou
,
Yuanchong Zhang
,
Andreas Roesch
, and
Kun Yang

Abstract

This study evaluates the skin temperature (ST) datasets of the International Satellite Cloud Climatology Project (ISCCP) D satellite product, the ISCCP FD satellite product, the 40-yr ECMWF Re-Analysis (ERA-40), the NCEP–NCAR Reanalysis, and the NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis. The monthly anomalies of all the datasets are correlated to each other and to most of the ground-truth stations with correlation coefficients >0.50. To evaluate their qualities, the 5 ST datasets are used to calculate clear-sky (CS) outgoing longwave radiation (OLR) and upward surface longwave radiation (USLR); the results are compared with the Earth Radiation Budget Experiment (ERBE) satellite observation and 14 surface stations. The satellite-derived STs and ERA-40 ST tend to bias high on hot deserts (e.g., Sahara Desert), and the reanalyzed STs tend to bias low in mountain areas (e.g., Tibet). In Northern Hemisphere high-latitude regions (tundra, wetlands, deciduous needle-leaf forests, and sea ice), the CS OLR anomalies calculated using the satellite-derived STs have higher correlations and lower root-mean-squared errors with the ERBE satellite observation than those derived from using the reanalyzed STs. ERA-40 underestimates the amplitude of the seasonal ST over glaciers. All the reanalysis products (ERA-40, NCEP–NCAR, and NCEP–DOE AMIP-II) overestimate the ST during partial sea ice–covered periods in the middle-high-latitude oceans. Nonetheless, suspected spurious noises with an amplitude of 2 K in the satellite-derived STs produce a physically unviable anomaly over earth’s surface where the amplitude of the anomaly is weak (such as open-water bodies, croplands, rain forest, grasslands, hot deserts, and cold deserts). Better land–ocean–ice schemes for a reanalysis should be developed for desert regions, high plateaus, fractional sea ice–covered oceans, and seasonally snow-covered lands, where the largest ST errors are identified.

Full access
Xiucheng Xiao
,
Danqing Huang
,
Ben Yang
,
Jian Zhu
,
Peiwen Yan
, and
Yaocun Zhang

ABSTRACT

Huang et al. recently reported that opposite phases of the interdecadal Pacific oscillation (IPO) and the Atlantic multidecadal oscillation (AMO) can affect the shift of the East Asian polar front jet (EAPJ) and the East Asian subtropical jet (EASJ) in the boreal winter. To give a full image of the relationship among the IPO, AMO, and concurrent variation of jets throughout the whole year, this study investigates the changes in summer jets response to the combinations of the IPO and AMO, and mostly focuses on the quantitative analysis in the role of the IPO and AMO. Both of the diagnostic analysis and atmospheric model simulations confirm that combinations of the negative phase of the IPO (“−IPO”) and the positive phase of the AMO (“+AMO”) can significantly enhance the EAPJ and reduce the EASJ in the summer, via the meridional temperature gradient and the Eady growth rate, and vice versa in the “+IPO −AMO” combination. The reanalysis data show that this relationship is particularly evident between the periods of 1999–2014 and 1979–98. Based on the simulations, the multilinear regression has indicated that −IPO plays a more important role than +AMO, particularly for the reduced EASJ. We have further revealed two pathways of the stationary Rossby wave activity anomaly, eastward from the North Atlantic to East Asia along 60°N and westward from the North Pacific to East Asia along 40°N. The two activities are associated with anomalous anticyclone along the active regions between EAPJ and EASJ, and therefore affect the jet variations.

Free access
Yun Qian
,
Huiping Yan
,
Larry K. Berg
,
Samson Hagos
,
Zhe Feng
,
Ben Yang
, and
Maoyi Huang

Abstract

Accuracy of turbulence parameterization in representing planetary boundary layer (PBL) processes and surface–atmosphere interactions in climate models is critical for predicting the initiation and development of clouds. This study 1) evaluates WRF Model–simulated spatial patterns and vertical profiles of atmospheric variables at various spatial resolutions and with different PBL, surface layer, and shallow convection schemes against measurements; 2) identifies model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments; and 3) investigates the main causes of these biases by analyzing the dependence of modeled surface fluxes on PBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in the PBL and free atmosphere and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and latent heat (LH) flux biases, which suggests the positive feedback between precipitation and surface fluxes is responsible, at least in part, for the model drifts. The updated Kain–Fritsch cumulus potential (KF-CuP) shallow convection scheme tends to suppress the deep convection, consequently decreasing precipitation. The Eta Model surface layer scheme predicts more reasonable LH fluxes and LH–wind speed relationship than those for the MM5 scheme. The results help us identify sources of biases of current parameterization schemes in reproducing PBL processes, the initiation of convection, and intraseasonal variability of precipitation.

Full access
Danqing Huang
,
Aiguo Dai
,
Ben Yang
,
Peiwen Yan
,
Jian Zhu
, and
Yaocun Zhang

Abstract

Recent concurrent shifts of the East Asian polar-front jet (EAPJ) and the East Asian subtropical jet (EASJ) in the boreal winter have raised concerns, since they could result in severe weather events over East Asia. However, the possible mechanisms are not fully understood. In this study, the roles of the interdecadal Pacific oscillation (IPO) and the Atlantic multidecadal oscillation (AMO) are investigated by analyzing reanalysis data and model simulations. Results show that combinations of opposite phases of the IPO and AMO can result in significant shifts of the two jets during 1920–2014. This relationship is particularly evident during 1999–2014 and 1979–98 in the reanalysis data. A combination of a negative phase of the IPO (−IPO) and a positive phase of the AMO (+AMO) since the late 1990s has enhanced the meridional temperature gradient and the Eady growth rate and thus westerlies over the region between the two jets, but weakened them to the south and north of the region, thereby contributing to the equatorward and poleward shifts of the EAPJ and EASJ, respectively. Atmospheric model simulations are further used to investigate the relative contribution of −IPO and +AMO to the jet shifts. The model simulations show that the combination of −IPO and +AMO favors the recent jet changes more than the individual −IPO or +AMO. Under a concurrent −IPO and +AMO, the meridional eddy transport of zonal momentum and sensitive heat strengthens, and more mean available potential energy converts to the eddy available potential energy over the region between the two jets, which enhances westerly winds there.

Full access
Ben Yang
,
Yaocun Zhang
,
Yun Qian
,
Tongwen Wu
,
Anning Huang
, and
Yongjie Fang

Abstract

In this study, the authors apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM, version 2.1 (BCC_AGCM2.1). The results herein show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, including increased precipitation over the equatorial Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic mei-yu distribution over eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It is shown that simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño–decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs over ocean in observations) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific Ocean, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean–western Pacific teleconnection as observed. The model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

Full access
Huiling Ouyang
,
Xu Tang
,
Rajesh Kumar
,
Renhe Zhang
,
Guy Brasseur
,
Ben Churchill
,
Mozaharul Alam
,
Haidong Kan
,
Hong Liao
,
Tong Zhu
,
Emily Ying Yang Chan
,
Ranjeet Sokhi
,
Jiacan Yuan
,
Alexander Baklanov
,
Jianmin Chen
, and
Maria Katherina Patdu

Abstract

Air pollution is estimated to contribute to approximately 7 million premature deaths, of which around 4.5 million deaths are linked to ambient (outdoor) air pollution. The deaths attributed to air pollution rank the highest in the Asian region, and thus, the implementation of the stricter World Health Organization (WHO) Global Air Quality Guidelines (AQGs) released on 22 September 2021 will generate the greatest health benefits in the Asian region. Here we present some key messages and recommendations at national, regional, and global levels to promote the strategies for implementation of the ambitious WHO 2021 AQGs in the Asian region.

Full access
Ariane Frassoni
,
Carolyn Reynolds
,
Nils Wedi
,
Zied Ben Bouallègue
,
Antonio Caetano Vaz Caltabiano
,
Barbara Casati
,
Jonathan A. Christophersen
,
Caio A. S. Coelho
,
Chiara De Falco
,
James D. Doyle
,
Laís G. Fernandes
,
Richard Forbes
,
Matthew A. Janiga
,
Daniel Klocke
,
Linus Magnusson
,
Ron McTaggart-Cowan
,
Morteza Pakdaman
,
Stephanie S. Rushley
,
Anne Verhoef
,
Fanglin Yang
, and
Günther Zängl
Open access