Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Bernard Pinty x
  • All content x
Clear All Modify Search
Bernard Pinty and Michel M. Verstraete

Abstract

This paper discusses the problem of radiation transfer in geophysical media, in particular, within homogeneous plant canopies over terrestrial surfaces. The emphasis is placed on the specificities of this problem when it is addressed with the radiation transfer equation classically used in atmospheric sciences. The discussion takes place in the context of remote sensing applications, where the main constraint is to be able to invert the photon transport model against observations to retrieve the properties of the observed media. To facilitate the solution of the radiative coupling between the vegetation and atmospheric layers, the same formal approach is used in both media, and the extinction and differential scattering coefficients are specified in a similar way. The accurate description of the radiation transfer within a vegetation layer is complicated by the fact that both of these coefficients depend on the position of the external sources of radiation, and by the lack of precise knowledge about the radiative boundary conditions at the top and bottom of this layer. Effective solutions to the radiation transfer problem in plant canopies require the introduction of specific hypotheses, for instance, in the treatment of the multiple scattering contribution.

Full access
Michel Desbois, Vincent Pircher, and Bernard Pinty

Abstract

Cloud winds derived from the European geostationary satellite METEOSAT for the region of the west African monsoon are validated by DC-7 aircraft measurements for the low levels of the tropical atmosphere. Since the two sets of results are in agreement, it appears that lowest level cumuli as well as stratocumuli can be used as tracers of the actual wind field. The satellite wind fields show a large-scale circulation characterized by two opposite flows in the lower layers: the southwesterly monsoon flow near the sea surface and a northeasterly flow above, at approximately the 2000 m level.

Full access
Joachim H. Josepoh, Jean Laquinta, and Bernard Pinty

Abstract

Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system.

For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to nuke this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to he acceptable by other researchers and. in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND's as well as experimental data for 17 plant canopies.

It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LANDS. However, only the uniform and planophile LANDs lead to canopy hemispheric reflectances, which are markedly different from one another.

The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must he made on the basis of experimental data.

Full access
Bernard Pinty, Gérard Szejwach, and Jacques Stum

Abstract

A method to estimate surface albedo in the African Sahel is proposed and discussed. This method, which uses METEOSAT imagery and routine surface global radiation measurement is shown to be relevant for climatological studies.

The accuracy in the estimated albedos is analysed with respect to the intervening physical parameters. It is shown that a main source of error lies in the estimate of 0.4–1.1 μm radiances from filtered METEOSAT radiances. This problem limits the expected attainable accuracy in albedo to about 10% for typical land surface albedos.

Full access
Frank Roux, Jacques Testud, Marc Payen, and Bernard Pinty

Abstract

Pressure and temperature fields within a West African squall line, retrieved from dual-Doppler radar data collected during the “COPT 81” (Convection Profonde Tropicale) experiment are presented. The method for derivation of thew results is approximately similar to that proposed by Gal-Chen, based on the anelastic equation of motion.

Comparisons between pressure and temperature fields deduced from radar data at the lowest levels and surface network measurements show good agreement. The inferred thermodynamic structure displays the influence of a low-level frontward flow which is mainly due to a density current of cold air, generated in the stratiform region of the squall line and resulting from a mesoscale downdraft. This frontward flow contributes to initiate and maintain a frontal updraft through both nonhydrostatic pressure perturbation and temperature difference between entering air and colder frontward flow. At higher altitudes, mixing with the environment reduces buoyancy in the frontal updraft, while weaker convective updrafts develop in the inner region.

Comparisons between these results and the kinematic and thermodynamic structures deduced from a previous observation (Le Mone, 1983) display different types of dynamics of organized convective systems.

Full access
Bernard Pinty, Malcolm Taberner, Vance R. Haemmerle, Susan R. Paradise, Eric Vermote, Michel M. Verstraete, Nadine Gobron, and Jean-Luc Widlowski

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky surface albedos are compared with similar products generated on the basis of the Multiangle Imaging SpectroRadiometer (MISR) surface bidirectional reflectance factor (BRF) model parameters available for the year 2005. The analysis is achieved using global-scale statistics to characterize the broad patterns of these two independent albedo datasets. The results obtained in M. Taberner et al. have shown that robust statistics can be established and that both datasets are highly correlated. As a result, the slight but consistent biases and trends identified in this paper, derived from statistics obtained on a global basis, should be considered sufficiently reliable to merit further investigation. The present paper reports on the zonal- and seasonal-mean differences retrieved from the analysis of the MODIS and MISR surface albedo broadband products. The MISR − MODIS differences exhibit a systematic positive bias or offset in the range of 0.01–0.03 depending on the spectral domain of interest. Results obtained in the visible domain exhibit a well-marked and very consistent meridional trend featuring a “smile effect” such that the MISR − MODIS differences reach maxima at the highest latitudes in both hemispheres. The analysis of seasonal variations observed in MISR and MODIS albedo products reveals that, in the visible domain, the MODIS albedos generate weaker seasonal changes than MISR and that the differences increase poleward from the equatorial regions. A detailed investigation of MODIS and MISR aerosol optical depth retrievals suggests that this large-scale meridional trend is probably not caused by differences in the aerosol load estimated by each instrument. The scale and regularity of the meridional trend suggests that this may be due to the particular sampling regime of each instrument in the viewing azimuthal planes and/or approximations in the atmospheric correction processes. If this is the case, then either MODIS is underestimating, or MISR overestimating, the surface anisotropy or both.

Full access
Bernard Pinty, Malcolm Taberner, Vance R. Haemmerle, Susan R. Paradise, Eric Vermote, Michel M. Verstraete, Nadine Gobron, and Jean-Luc Widlowski
Full access
David J. Diner, Gregory P. Asner, Roger Davies, Yuri Knyazikhin, Jan-Peter Muller, Anne W. Nolin, Bernard Pinty, Crystal B. Schaaf, and Julienne Stroeve

The physical interpretation of simultaneous multiangle observations represents a relatively new approach to remote sensing of terrestrial geophysical and biophysical parameters. Multiangle measurements enable retrieval of physical scene characteristics, such as aerosol type, cloud morphology and height, and land cover (e.g., vegetation canopy type), providing improved albedo accuracies as well as compositional, morphological, and structural information that facilitates addressing many key climate, environmental, and ecological issues. While multiangle data from wide field-of-view scanners have traditionally been used to build up directional “signatures” of terrestrial scenes through multitemporal compositing, these approaches either treat the multiangle variation as a problem requiring correction or normalization or invoke statistical assumptions that may not apply to specific scenes. With the advent of a new generation of global imaging spectroradiometers capable of acquiring simultaneous visible/near-IR multiangle observations, namely, the Along-Track Scanning Radiometer-2, the Polarization and Directionality of the Earth's Reflectances instrument, and the Multiangle Imaging SpectroRadiometer, both qualitatively new approaches as well as quantitative improvements in accuracy are achievable that exploit the multiangle signals as unique and rich sources of diagnostic information. This paper discusses several applications of this technique to scientific problems in terrestrial atmospheric and surface geophysics and biophysics.

Full access
Bernard Pinty, Alessio Lattanzio, John V. Martonchik, Michel M. Verstraete, Nadine Gobron, Malcolm Taberner, Jean-Luc Widlowski, Robert E. Dickinson, and Yves Govaerts

Abstract

New satellite instruments have been delivering a wealth of information regarding land surface albedo. This basic quantity describes what fraction of solar radiation is reflected from the earth’s surface. However, its concept and measurements have some ambiguity resulting from its dependence on the incidence angles of both the direct and diffuse solar radiation. At any time of day, a surface receives direct radiation in the direction of the sun, and diffuse radiation from the various other directions in which it may have been scattered by air molecules, aerosols, and cloud droplets. This contribution proposes a complete description of the distribution of incident radiation with angles, and the implications in terms of surface albedo are given in a mathematical form, which is suitable for climate models that require evaluating surface albedo many times. The different definitions of observed albedos are explained in terms of the coupling between surface and atmospheric scattering properties. The analytical development in this paper relates the various quantities that are retrieved from orbiting platforms to what is needed by an atmospheric model. It provides a physically simple and practical approach to evaluation of land surface albedo values at any condition of sun illumination irrespective of the current range of surface anisotropic conditions and atmospheric aerosol load. The numerical differences between the various definitions of albedo for a set of typical atmospheric and surface scattering conditions are illustrated through numerical computation.

Full access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Full access