Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Bianca Adler x
  • Refine by Access: All Content x
Clear All Modify Search
Bianca Adler
,
Olga Kiseleva
,
Norbert Kalthoff
, and
Andreas Wieser

Abstract

During the Convective Storm Initiation Project experiment, which was conducted in summer 2005 in southern England, vertical velocity in the convective boundary layer (CBL) was measured simultaneously with a research aircraft and a wind lidar. The aircraft performed horizontal flight legs approximately parallel to the prevailing wind direction and centered over the lidar. This measurement setup allows for the comparing of CBL characteristics (CBL depth z i , integral length scale l w , spectral peak wavelength λ m , and vertical velocity variance σ w 2 ) from temporal (lidar) and spatial (aircraft) measurements. For this, the lidar time series are transferred into space using the mean wind. While the statistics of the aircraft data are all based on the 34-km flight legs, the averaging interval for the lidar is either 1 h or a longer period that corresponds to the 34-km leg. Although the l w and λ m values from aircraft and lidar measurements are in the same range (100–200 and 500–2000 m) and agree well on the average, the correlation for individual legs is very low (R 2 < 0.17). One possible explanation is the large uncertainty that arises from the transfer of the lidar time series to space. For σ w 2 , the agreement between aircraft and lidar is better for individual legs (R 2 ≥ 0.63), but the mean absolute difference in σ w 2 is about 2.5 times as large as the statistical error. We examine the nonstationarity and heterogeneity for the lidar and aircraft samples and can exclude these as the major sources for the large differences between lidar and aircraft data.

Full access
Joseph Sedlar
,
Tilden Meyers
,
Christopher J. Cox
, and
Bianca Adler

Abstract

Measurements of atmospheric structure and surface energy budgets distributed along a high-altitude mountain watershed environment near Crested Butte, Colorado, from two separate, but coordinated, field campaigns, Surface Atmosphere Integrated field Laboratory (SAIL) and Study of Precipitation, the Lower Atmosphere, and Surface for Hydrometeorology (SPLASH), are analyzed. This study identifies similarities and differences in how clouds influence the radiative budget over one snow-free summer season (2022) and two snow-covered seasons (2021/22; 2022/23) for this alpine location. A relationship between lower-tropospheric stability stratification and longwave radiative flux from the presence or absence of clouds is identified. When low clouds persisted, often with signatures of supercooled liquid in winter, the lower troposphere experienced weaker stability, while radiatively clear skies that are less likely to be influenced by liquid droplets were associated with appreciably stronger lower-tropospheric stratification. Corresponding surface turbulent heat fluxes partitioned differently based upon the cloud–stability stratification regime derived from early morning radiosounding profiles. Combined with the differences in the radiative budget largely resulting from dramatic seasonal differences in surface albedo, the lower atmosphere stratification, surface energy budget, and near-surface thermodynamics are shown to be modified by the effective longwave radiative forcing of clouds. The diurnal evolution of thermodynamics and surface energy components varied depending on the early morning stratification state. Thus, the importance of quiescent versus synoptically active large-scale meteorology is hypothesized as a critical forcing for cloud properties and associated surface energy budget variations. The physical relationships between clouds, radiation, and stratification can provide a useful suite of metrics for process understanding and to evaluate numerical models in such an undersampled, highly complex terrain environment.

Open access
Bianca Adler
,
C. David Whiteman
,
Sebastian W. Hoch
,
Manuela Lehner
, and
Norbert Kalthoff

Abstract

Episodic nighttime intrusions of warm air, accompanied by strong winds, enter the enclosed near-circular Meteor Crater basin on clear, synoptically undisturbed nights. Data analysis is used to document these events and to determine their spatial and temporal characteristics, their effects on the atmospheric structure inside the crater, and their relationship to larger-scale flows and atmospheric stability. A conceptual model that is based on hydraulic flow theory is offered to explain warm-air-intrusion events at the crater. The intermittent warm-air-intrusion events were closely related to a stable surface layer and a mesoscale (~50 km) drainage flow on the inclined plain outside the crater and to a continuous shallow cold-air inflow that came over the upstream crater rim. Depending on the upstream conditions, the cold-air inflow at the crater rim deepened temporarily and warmer air from above the stable surface layer on the surrounding plain descended into the crater, as part of the flowing layer. The flow descended up to 140 m into the 170-m-deep crater and did not penetrate the approximately 30-m-deep crater-floor inversion. The intruding air, which was up to 5 K warmer than the crater atmosphere, did not extend into the center of the crater, where the nighttime near-isothermal layer in the ambient crater atmosphere remained largely undisturbed. New investigations are suggested to test the hypothesis that the warm-air intrusions are associated with hydraulic jumps.

Full access
Bianca Adler
,
James M. Wilczak
,
Laura Bianco
,
Irina Djalalova
,
James B. Duncan Jr.
, and
David D. Turner

Abstract

Persistent cold pools form as layers of cold stagnant air within topographical depressions mainly during wintertime, when the near-surface air cools and/or the air aloft warms and daytime surface heating is insufficient to mix out the stable layer. An area often affected by persistent cold pools is the Columbia River basin in the Pacific Northwest, when a high pressure system east of the Cascade Range promotes radiative cooling and easterly flow. The only major outflow for the easterly flow is through the narrow Columbia River Gorge that cuts through the north–south-oriented Cascade Range and often experiences very strong gap flows. Observations collected during the Second Wind Forecast Improvement Project (WFIP2) are used to study a persistent cold pool in the Columbia River basin between 10 and 19 January 2017 that was associated with a strong gap flow. We used data from various remote sensing and in situ instruments and an optimal estimation physical retrieval to obtain thermodynamic profiles to address the temporal and spatial characteristics of the cold pool and gap flow and to investigate the physical processes involved during formation, maintenance, and decay. While large-scale temperature advection occurred during all phases, we found that the cold-pool vertical structure was modulated by the existence of low-level clouds and that turbulent shear-induced mixing and downslope wind storms likely played a role during its decay.

Full access
C. David Whiteman
,
Manuela Lehner
,
Sebastian W. Hoch
,
Bianca Adler
,
Norbert Kalthoff
, and
Thomas Haiden

Abstract

The interactions between a katabatic flow on a plain and a circular basin cut into the plain and surrounded by an elevated rim were examined during a 5-h steady-state period during the Second Meteor Crater Experiment (METCRAX II) to explain observed disturbances to the nocturnal basin atmosphere. The approaching katabatic flow split horizontally around Arizona’s Meteor Crater below a dividing streamline while, above the dividing streamline, an ~50-m-deep stable layer on the plain was carried over the 30–50-m rim of the basin. A flow bifurcation occurred over or just upwind of the rim, with the lowest portion of the stable layer having negative buoyancy relative to the air within the crater pouring continuously over the crater’s upwind rim and accelerating down the inner sidewall. The cold air intrusion was deepest and coldest over the direct upwind crater rim. Cold air penetration depths varied around the inner sidewall depending on the temperature deficit of the inflow relative to the ambient environment inside the crater. A shallow but extremely stable cold pool on the crater floor could not generally be penetrated by the inflow and a hydraulic jump–like feature formed on the lower sidewall as the flow approached the cold pool. The upper nonnegatively buoyant portion of the stable layer was carried horizontally over the crater, forming a neutrally stratified, low–wind speed cavity or wake in the lee of the upwind rim that extended downward into the crater over the upwind sidewall.

Full access
Florian Pantillon
,
Bianca Adler
,
Ulrich Corsmeier
,
Peter Knippertz
,
Andreas Wieser
, and
Akio Hansen

Abstract

Damaging gusts in windstorms are represented by crude subgrid-scale parameterizations in today’s weather and climate models. This limitation motivated the Wind and Storms Experiment (WASTEX) in winter 2016–17 in the Upper Rhine Valley over southwestern Germany. Gusts recorded at an instrumented tower during the passage of extratropical cyclone “Thomas” on 23 February 2017 are investigated based on measurements of radial wind with ≈70-m along-beam spacing from a fast-scanning Doppler lidar and realistic large-eddy simulations with grid spacings down to 78 m using the Icosahedral Nonhydrostatic model. Four wind peaks occur due to the storm onset, the cold front, a precipitation line, and isolated showers. The first peak is related to a sudden drop in dewpoint and results from the downward mixing of a low-level jet and a dry layer within the warm sector characterized by extremely high temperatures for the season. While operational convection-permitting forecasts poorly predict the storm onset overall, a successful ensemble member highlights the role of upstream orography. Lidar observations reveal the presence of long-lasting wind structures that result from a combination of convection- and shear-driven instability. Large-eddy simulations contain structures elongated in the wind direction that are qualitatively similar but too coarse compared to the observed ones. Their size is found to exceed the effective model resolution by one order of magnitude due to their elongation. These results emphasize the need for subkilometer-scale measuring and modeling systems to improve the representation of gusts in windstorms.

Open access
Robert S. Arthur
,
Timothy W. Juliano
,
Bianca Adler
,
Raghavendra Krishnamurthy
,
Julie K. Lundquist
,
Branko Kosović
, and
Pedro A. Jiménez

Abstract

Cold-air pools (CAPs), or stable atmospheric boundary layers that form within topographic basins, are associated with poor air quality, hazardous weather, and low wind energy output. Accurate prediction of CAP dynamics presents a challenge for mesoscale forecast models in part because CAPs occur in regions of complex terrain, where traditional turbulence parameterizations may not be appropriate. This study examines the effects of the planetary boundary layer (PBL) scheme and horizontal diffusion treatment on CAP prediction in the Weather Research and Forecasting (WRF) Model. Model runs with a one-dimensional (1D) PBL scheme and Smagorinsky-like horizontal diffusion are compared with runs that use a new three-dimensional (3D) PBL scheme to calculate turbulent fluxes. Simulations are completed in a nested configuration with 3-km/750-m horizontal grid spacing over a 10-day case study in the Columbia River basin, and results are compared with observations from the Second Wind Forecast Improvement Project. Using event-averaged error metrics, potential temperature and wind speed errors are shown to decrease both with increased horizontal grid resolution and with improved treatment of horizontal diffusion over steep terrain. The 3D PBL scheme further reduces errors relative to a standard 1D PBL approach. Error reduction is accentuated during CAP erosion, when turbulent mixing plays a more dominant role in the dynamics. Last, the 3D PBL scheme is shown to reduce near-surface overestimates of turbulence kinetic energy during the CAP event. The sensitivity of turbulence predictions to the master length-scale formulation in the 3D PBL parameterization is also explored.

Significance Statement

In this article, we demonstrate how a new framework for modeling atmospheric turbulence improves cold pool predictions, using a case study from January 2017 in the Columbia River basin (U.S. Pacific Northwest). Cold pools are regions of cold, stagnant air that form within valleys or basins, and improved forecasts could help to mitigate the risks they pose to air quality, transportation, and wind energy production. For the chosen case study, our tests show a reduction in temperature and wind speed errors by up to a factor of 2–3 relative to standard model options. These results strongly motivate continued development of the framework as well as its application to other complex weather events.

Open access
C. David Whiteman
,
Manuela Lehner
,
Sebastian W. Hoch
,
Bianca Adler
,
Norbert Kalthoff
,
Roland Vogt
,
Iris Feigenwinter
,
Thomas Haiden
, and
Matthew O. G. Hills

Abstract

The successive stages of nocturnal atmospheric structure inside a small isolated basin are investigated when a katabatically driven flow on an adjacent tilted plain advects cold air over the basin rim. Data came from Arizona’s Meteor Crater during intensive observing period 4 of the Second Meteor Crater Experiment (METCRAX II) when a mesoscale flow above the plain was superimposed on the katabatic flow leading to a flow acceleration and then deceleration over the course of the night. Following an overflow-initiation phase, the basin atmosphere over the upwind inner sidewall progressed through three stages as the katabatic flow accelerated: 1) a cold-air-intrusion phase in which the overflowing cold air accelerated down the upwind inner sidewall, 2) a bifurcation phase in which the katabatic stable layer lifted over the rim included both a nonnegatively buoyant upper layer that flowed horizontally over the basin and a negatively buoyant lower layer (the cold-air intrusion) that continued on the slope below to create a hydraulic jump at the foot of the sidewall, and 3) a final warm-air-intrusion phase in which shear instability in the upper overflowing layer produced a lee wave that brought warm air from the elevated residual layer downward into the basin. Strong winds during the third phase penetrated to the basin floor, stirring the preexisting, intensely stable, cold pool. Later in the night a wind direction change aloft decelerated the katabatic wind and the atmosphere progressed back through the bifurcation and cold-air-intrusion phases. A conceptual diagram illustrates the first four evolutionary phases.

Full access
Bianca Adler
,
Alexander Gohm
,
Norbert Kalthoff
,
Nevio Babić
,
Ulrich Corsmeier
,
Manuela Lehner
,
Mathias W. Rotach
,
Maren Haid
,
Piet Markmann
,
Eckhard Gast
,
George Tsaknakis
, and
George Georgoussis
Full access
Bianca Adler
,
Alexander Gohm
,
Norbert Kalthoff
,
Nevio Babić
,
Ulrich Corsmeier
,
Manuela Lehner
,
Mathias W. Rotach
,
Maren Haid
,
Piet Markmann
,
Eckhard Gast
,
George Tsaknakis
, and
George Georgoussis

Abstract

While the exchange of mass, momentum, moisture, and energy over horizontally homogeneous, flat terrain is mostly driven by vertical turbulent mixing, thermally and dynamically driven mesoscale flows substantially contribute to the Earth–atmosphere exchange in the atmospheric boundary layer over mountainous terrain (MoBL). The interaction of these processes acting on multiple scales leads to a large spatial variability in the MoBL, whose observational detection requires comprehensive instrumentation and a sophisticated measurement strategy. We designed a field campaign that targets the three-dimensional flow structure and its impact on the MoBL in a major Alpine valley. Taking advantage of an existing network of surface flux towers and remote sensing instrumentation in the Inn Valley, Austria, we added a set of ground-based remote sensing instruments, consisting of Doppler lidars, a ceilometer, a Raman lidar, and a microwave radiometer, and performed radio soundings and aircraft measurements. The objective of the Cross-Valley Flow in the Inn Valley Investigated by Dual-Doppler Lidar Measurements (CROSSINN) experiment is to determine the mean and turbulent characteristics of the flow in the MoBL under different synoptic conditions and to provide an intensive dataset for the future validation of mesoscale and large-eddy simulations. A particular challenge is capturing the two-dimensional kinematic flow in a vertical plane across the whole valley using coplanar synchronized Doppler lidar scans, which allows the detection of cross-valley circulation cells. This article outlines the scientific objectives, instrument setup, measurement strategy, and available data; summarizes the synoptic conditions during the measurement period of 2.5 months; and presents first results.

Full access