Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Biao Geng x
  • Refine by Access: All Content x
Clear All Modify Search
Biao Geng

Abstract

This study investigated the relationship between a split front and precipitation over western Japan on 10–11 July 2007 based on data from routine observations and a global objective analysis. The split front formed at the leading edge of a dry intrusion overrunning a mei-yu front in a deep layer from the north. Strong upward motion was present ahead of the frontogenesis associated with the split front. In contrast, upward motion over the mei-yu front was suppressed by downward motion behind the split front. An intense rainband developed along the split front south of the mei-yu front. In contrast, precipitation over the mei-yu front gradually disappeared with the southward advance of the split front. Rainfall as heavy as 99 mm h−1 was observed under the rainband associated with the split front. The strong upward motion that induced heavy rains was attributed to the rising branch of the frontal circulation of the split front and the intense low-level convergence facilitated by the dry intrusion behind the split front. These findings indicate that split fronts have a substantial impact on the development and distribution of precipitation during the mei-yu season.

Full access
Biao Geng and Masaki Katsumata

Abstract

In this study, we examined the variations of precipitation morphology and rainfall in relation to the simultaneous passages of a Madden–Julian oscillation (MJO) event and convectively coupled equatorial waves (CCEWs) observed during the Years of the Maritime Continent pilot study. We utilized globally merged infrared brightness temperature data and the radiosonde and radar data observed aboard the Research Vessel Mirai at 4°4′S, 101°54′E. As well as the observed MJO event, equatorial Rossby waves (ERWs), Kelvin waves (KWs), and mixed Rossby–gravity waves (MRGWs) were identified. The radar data exhibited high-frequency variation, mainly caused by KWs and MRGWs, and low-frequency variation, mainly caused by the MJO and ERWs. The MRGWs predominantly modulated convective echo areas and both convective and stratiform volumetric rainfall. In contrast, the MJO event had little influence on the variance of convective echoes. Moreover, stratiform echo areas and volumetric rainfall were more strongly modulated by the combined effects of the MJO, ERWs, KWs, and MRGWs than their convective counterparts. The intense development of stratiform echo areas and volumetric rainfall was coherent with the superimposition of the active phases of the MJO event and all the analyzed CCEWs. The strongest development and a significant reduction of convective echo-top heights before and after the peak MJO date, respectively, were coherent with the passages of ERWs and MRGWs, which were the dominant wave types in modulating echo-top heights. Thus, it appears that the superimposition of the CCEWs on the MJO event exerted complex modulations on the convective activities within the MJO event.

Open access
Biao Geng, Kunio Yoneyama, and Ryuichi Shirooka

Abstract

This study examined the synoptic evolution and internal structure of a monsoon trough in association with the deep equatorward intrusion of a midlatitude upper trough in the western North Pacific Ocean in June 2008. The study was based on data from routine synoptic observations and intensive observations conducted on board the research vessel Mirai at 12°N, 135°E. The monsoon trough was first observed to extend southeastward from the center of a tropical depression. It then moved northward, with its eastern edge moving faster and approaching a surface low pressure cell induced by the upper trough. The distinct northward migration caused the monsoon trough to become oriented from the southwest to the northeast. The monsoon trough merged with the surface low pressure cell and extended broadly northeastward. The passage of the monsoon trough over the Mirai was accompanied by lower pressure, higher air and sea surface temperature, and minimal rainfall. The monsoon trough extended upward to nearly 500 hPa and sloped southward with height. It was overlain by northwesterly winds, negative geopotential height and temperature anomalies, and extremely dry air in the upper troposphere. Precipitation systems were weak and scattered near the monsoon trough but were intense and extensive south of the surface monsoon trough, where intense low-level convergence and upper-level divergence caused deep and vigorous upward motion. It appears that the upper trough exerted important impacts on the development of both the monsoon trough and associated precipitation, which are discussed according to the observational results.

Full access
Satoru Yokoi, Shuichi Mori, Fadli Syamsudin, Urip Haryoko, and Biao Geng

Abstract

The diurnal cycle over tropical coastal waters is characterized by offshore migration of precipitation area during nighttime. This study analyzes in situ observational data collected during the YMC-Sumatra 2017 field campaign around the western coast of Sumatra Island, Indonesia, to examine the offshore migration phenomenon during 5–31 December 2017, when the Research Vessel Mirai was deployed about 90 km off the coast to perform observation. The offshore migration is observed in only less than a half of the 27 days. A comparison of radiosonde data at the vessel between days with and without the offshore migration reveals that vertical wind shear in the lower troposphere is a key environmental condition. In late afternoon of the days with the offshore migration, offshore (northeasterly) wind shear with height with considerable magnitude is observed, which is due to weaker daily mean southwesterly wind in the lower free troposphere, stronger southwesterly wind in the boundary layer, and sea breeze. As this condition is considered favorable for regeneration of convective cells to the offshore side of old ones, these results support an idea that the regeneration process is critical for the offshore migration. The Madden–Julian oscillation and cold surges play some roles in the weakening of the free-tropospheric wind. The migration speed is estimated at 2–3 m s−1, which is lower than that observed in another field campaign conducted in 2015 (Pre-YMC 2015). This difference is partly due to the difference in the environmental wind in the lower to midtroposphere.

Open access
Satoru Yokoi, Shuichi Mori, Masaki Katsumata, Biao Geng, Kazuaki Yasunaga, Fadli Syamsudin, Nurhayati, and Kunio Yoneyama

Abstract

This study analyzes data obtained by intensive observation during a pilot field campaign of the Years of the Maritime Continent Project (Pre-YMC) to investigate the diurnal cycle of precipitation in the western coastal area of Sumatra Island. The diurnal cycle during the campaign period (November–December 2015) is found to have a number of similarities with statistical behavior of the diurnal cycle as revealed by previous studies, such as afternoon precipitation over land, nighttime offshore migration of the precipitation zone, and dependency on Madden–Julian oscillation (MJO) phase. Composite analyses of radiosonde soundings from the Research Vessel (R/V) Mirai, deployed about 50 km off the coast, demonstrate that the lower free troposphere starts cooling in late afternoon (a couple of hours earlier than the cooling in the boundary layer), making the lower troposphere more unstable just before precipitation starts to increase. As the nighttime offshore precipitation tends to be more vigorous on days when the cooling in the lower free troposphere is larger, it is possible that the destabilization due to the cooling contributes to the offshore migration of the precipitation zone via enhancement of convective activity. Comparison of potential temperature and water vapor mixing ratio tendencies suggests that this cooling is substantially due to vertical advection by an ascent motion, which is possibly a component of shallow gravity waves. These results support the idea that gravity waves emanating from convective systems over land play a significant role in the offshore migration of the precipitation zone.

Full access