Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Bin Guan x
  • Refine by Access: All Content x
Clear All Modify Search
Bin Guan
and
Sumant Nigam

Abstract

A consistent analysis of natural variability and secular trend in Pacific SSTs in the twentieth century is presented. By focusing on spatial and temporal recurrence, but without imposition of periodicity constraints, this single analysis discriminates between biennial, ENSO, and decadal variabilities, leading to refined evolutionary descriptions, and between these natural variability modes and secular trend, all without advance filtering (and potential aliasing) of the SST record. SST anomalies of all four seasons are analyzed together using the extended-EOF technique.

Canonical ENSO variability is encapsulated in two modes that depict the growth (east-to-west along the equator) and decay (near-simultaneous amplitude loss across the basin) phases. Another interannual mode, energetic in recent decades, is shown linked to the west-to-east SST development seen in post–climate shift ENSOs: the noncanonical ENSO mode. The mode is closely related to Chiang and Vimont’s meridional mode, and leads to some reduction in canonical ENSO’s oscillatory tendency.

Pacific decadal variability is characterized by two modes: the Pan-Pacific mode has a horseshoe structure with the closed end skirting the North American coast, and a quiescent eastern equatorial Pacific. The mode exhibits surprising connections to the tropical/subtropical Atlantic, with correlations there resembling the Atlantic multidecadal oscillation. The second decadal mode—the North Pacific mode—captures the 1976/77 climate shift and is closer to Mantua’s Pacific decadal oscillation. This analysis shows, perhaps for the first time, the striking links of the North Pacific mode to the western tropical Pacific and Indian Ocean SSTs. The physicality of both modes is assessed from correlations with the Pacific biological time series.

Finally, the secular trend is characterized: implicit accommodation of natural variability leads to a nonstationary SST trend, including midcentury cooling. The SST trend is remarkably similar to the global surface air temperature trend. Geographically, a sliver of cooling is found in the central equatorial Pacific in the midst of widespread but nonuniform warming in all basins.

An extensive suite of sensitivity tests, including counts of the number of observational analogs of the modes in test analyses, supports the robustness of this analysis.

Full access
Bin Guan
and
Sumant Nigam

Abstract

Atlantic SST variability in the twentieth century is analyzed factoring the influence of natural SST variability in the Pacific basin and the secular change in global SSTs. The tropical and northern extratropical basins are analyzed together using the extended EOF technique, which permits extraction of the interannual and multidecadal modes in the pan-Atlantic basin in a single step.

The leading mode of Pacific-uninfluenced SST variability is a multidecadal oscillation focused in the extratropical basin, with a period of ∼70 yr. The mode differs from the conventional Atlantic multidecadal oscillation (AMO) in the near quiescence of the tropical–subtropical basin, highlighting the significant influence of the Pacific basin on this region in conventional analysis; as much as 45% of the regional variance resulting from the conventional AMO is due to this influence.

The second and third modes capture the growth (east-to-west development) and decay (near-simultaneous loss of amplitudes) of interannual SST variability in the eastern tropical Atlantic. A nominal 4-yr evolution cycle is identified, but phase transitions are irregular.

The fourth mode describes a north–south tripole with the mature-phase structure resembling the North Atlantic Oscillation’s (NAO’s) SST footprint in winter. The mode lags the NAO by two seasons. Modal evolution involves eastward extension of the main lobe (centered near the separation of the Gulf Stream) along with shrinkage of the oppositely signed two side lobes.

Full access
Bin Guan
and
Johnny C. L. Chan

Abstract

The nonstationarity of the intraseasonal oscillations (ISOs) associated with the western North Pacific summer monsoon (WNPSM) is examined using a wavelet analysis of outgoing longwave radiation (OLR). Both the 10–20- and 30–60-day ISOs are found to display significant interannual modulations, and their relative strengths vary with time. The variation of OLR associated with a strong ISO, either 10–20- or 30–60-day, could be as large as 20 W m−2 in magnitude. Case studies showed that the mechanism for development of low OLR may differ in individual years, and that the 10–20-day ISO, the 30–60-day ISO, and the seasonal cycle may each become dominant in different years.

Full access
Bin Liu
,
Huiqing Liu
,
Lian Xie
,
Changlong Guan
, and
Dongliang Zhao

Abstract

A coupled atmosphere–wave–ocean modeling system (CAWOMS) based on the integration of atmosphere–wave, atmosphere–ocean, and wave–current interaction processes is developed. The component models consist of the Weather Research and Forecasting (WRF) model, the Simulating Waves Nearshore (SWAN) model, and the Princeton Ocean Model (POM). The coupling between the model components is implemented by using the Model Coupling Toolkit. The CAWOMS takes into account various wave-related effects, including wave state and sea-spray-affected sea surface roughness, sea spray heat fluxes, and dissipative heating in atmosphere–wave coupling. It also considers oceanic effects such as the feedback of sea surface temperature (SST) cooling and the impact of sea surface current on wind stress in atmosphere–ocean coupling. In addition, wave–current interactions, including radiation stress and wave-induced bottom stress, are also taken into account. The CAWOMS is applied to the simulation of an idealized tropical cyclone (TC) to investigate the effects of atmosphere–wave–ocean coupling on TC intensity. Results show that atmosphere–wave coupling strengthens the TC system, while the thermodynamic coupling between the atmosphere and ocean weakens the TC as a result of the negative feedback of TC-induced SST cooling. The overall effects of atmosphere–wave–ocean coupling on TC intensity are determined by the balance between wave-related positive feedback and the negative feedback attributable to TC-induced SST cooling.

Full access
Bin Guan
,
Duane E. Waliser
, and
F. Martin Ralph

Abstract

A recent study presented nearly two decades of airborne atmospheric river (AR) observations and concluded that, on average, an individual AR transports ~5 × 108 kg s−1 of water vapor. The study here compares those cases to ARs independently identified in reanalyses based on a refined algorithm that can detect less well-structured ARs, with the dual-purpose of validating reanalysis ARs against observations and evaluating dropsonde representativeness relative to reanalyses. The first comparison is based on 21 dropsonde-observed ARs in the northeastern Pacific and those closely matched, but not required to be exactly collocated, in ERA-Interim (MERRA-2), which indicates a mean error of −2% (−8%) in AR width and +3% (−1%) in total integrated water vapor transport (TIVT) and supports the effectiveness of the AR detection algorithm applied to the reanalyses. The second comparison is between the 21 dropsonde ARs and ~6000 ARs detected in ERA-Interim (MERRA-2) over the same domain, which indicates a mean difference of 5% (20%) in AR width and 5% (14%) in TIVT and suggests the limited number of dropsonde observations is a highly (reasonably) representative sampling of ARs in the northeastern Pacific. Sensitivities of the comparison to seasonal and geographical variations in AR width/TIVT are also examined. The results provide a case where dedicated observational efforts in specific regions corroborate with global reanalyses in better characterizing the geometry and strength of ARs regionally and globally. The results also illustrate that the reanalysis depiction of ARs can help inform the selection of locations for future observational and modeling efforts.

Full access
Wenqing Zhang
,
Lian Xie
,
Bin Liu
, and
Changlong Guan

Abstract

Track, intensity, and, in some cases, size are usually used as separate evaluation parameters to assess numerical model performance on tropical cyclone (TC) forecasts. Such an individual-parameter evaluation approach often encounters contradictory skill assessments for different parameters, for instance, small track error with large intensity error and vice versa. In this study, an intensity-weighted hurricane track density function (IW-HTDF) is designed as a new approach to the integrated evaluation of TC track, intensity, and size forecasts. The sensitivity of the TC track density to TC wind radius was investigated by calculating the IW-HTDF with density functions defined by 1) asymmetric, 2) symmetric, and 3) constant wind radii. Using the best-track data as the benchmark, IW-HTDF provides a specific score value for a TC forecast validated for a specific date and time or duration. This new TC forecast evaluation approach provides a relatively concise, integrated skill score compared with multiple skill scores when track, intensity and size are evaluated separately. It should be noted that actual observations of TC size data are very limited and so are the estimations of TC size forecasts. Therefore, including TC size as a forecast evaluation parameter is exploratory at the present. The proposed integrated evaluation method for TC track, intensity, and size forecasts can be used for evaluating the track forecast alone or in combination with intensity and size parameters. As observations and forecasts of TC size become routine in the future, including TC size as a forecast skill assessment parameter will become more imperative.

Full access
Jiabao Wang
,
Michael J. DeFlorio
,
Bin Guan
, and
Christopher M. Castellano

Abstract

The Madden–Julian oscillation (MJO) is a unique type of organized tropical convection varying primarily on subseasonal time scales and is recognized as an important source of subseasonal predictability for midlatitude weather phenomena. This study provides observational evidence of MJO impacts on precipitation extreme intensity, frequency, and duration over the western United States. The results suggest a robust increase in precipitation extremes, especially in frequency, relative to climatological conditions over most of the western United States when the MJO is in its western Pacific phases during the extended boreal winter (October–March). Opposite changes are observed when the MJO is located over the Indian Ocean and Maritime Continent. The above MJO influence is characterized by strong seasonality, with the increase in extreme frequency mainly found in late autumn/early winter (OND) over California and a weaker or opposite response found in late winter (JFM). Also, MJO impacts have stronger regional consistency and persist for a longer time in OND compared to JFM. The seasonality of MJO impacts largely originates from the different amplitudes and patterns of both the MJO and basic states that are weaker and located/retreated more northwestward in OND than in JFM. This leads to different responses in MJO teleconnections including moisture transport and AR activity that contribute to the different precipitation extreme changes. The strong seasonality of the relationship between the MJO and western U.S. extreme precipitation shown in this study has implications to the source of subseasonal-to-seasonal predictions, which has a potential value to stakeholders including water resource managers.

Open access
Chenyu Cao
,
Xiaodan Guan
,
Wen Sun
,
Shuyang Guo
, and
Bin Chen

Abstract

In recent decades, a high frequency of extreme high temperature has occurred in many regions worldwide, with serious impacts on society and the economy. As the temperature increases, the sensitivity of extreme high temperatures to changing thresholds in the northern midlatitudes exhibits a different performance response. The results of this study show that extreme high temperature in the increasing phase is more sensitive to changes in the threshold in both observations and simulations (the largest difference in the speed of temperature increase occurs at 3.5 and 25 days decade−1), primarily in North America and central Asia. However, an obvious discrepancy appears in the time series before 1980 and the spatial scale over North America between the Berkeley Earth Surface Temperature (BEST) and Hadley Centre Global Historical Climatology Network-Daily (HadGHCND) datasets. This finding highlights the fact that the old definition of being in the increasing temperature phase in modern climate history is problematic today. At the same time, when the old base period is selected, the frequency of extreme high temperatures will become a common event (close to 98% in a year) by 2100. Using 1961–90 as the base period is not suitable for calculating extreme temperatures in the future from the perspective of adapting to climate change. The increasing temperature threshold means there will be more frequent hot days, indicating that agriculture and species will be negatively affected, more wildfires will occur, and thus risks to humanity will increase.

Restricted access
Yongli He
,
Jianping Huang
,
Herman Henry Shugart
,
Xiaodan Guan
,
Bin Wang
, and
Kailiang Yu

Abstract

Siberia has experienced a pronounced warming over the past several decades, which has induced an increase in the extent of evergreen conifer forest. However, the potential slowing of the trend of increasing surface air temperature (SAT) has produced intense debate since the late 1990s. During this warming hiatus, the Siberian region experienced a significant cooling during the winter season around 10 times that of the Northern Hemisphere (NH) as a whole. This potentially stresses evergreen conifer forests because cooler winters can cause cold-temperature damage and, hence, increase the mortality of young evergreen conifer forests. In this study, the response of Siberian forest composition during the warming hiatus was investigated using satellite observations coupled with model simulations. Observations indicated that from 2001 to 2012, the apparent area of evergreen conifer forest has increased by 10%, while that of the deciduous conifer forest has decreased by 40%. The transition from deciduous to evergreen conifer forest usually occurs through mixed forest or woody savannas as a buffer. To verify the response of evergreen conifer forest, model experiments were performed using an individual-based forest model. Hysteresis of forest change seen in the model simulations indicates that changes in forest composition dynamics under temperature oscillations induced by internal climate variability may not reverse this composition change. As a result, the evergreen conifer forest expansion under climate warming is expected to be a continuing process despite the occurrence of a warming hiatus, exerting far-reaching implications for climate-change-induced albedo shifts in the Siberian forest.

Full access
Emily A. Slinskey
,
Paul C. Loikith
,
Duane E. Waliser
,
Bin Guan
, and
Andrew Martin

Abstract

Atmospheric rivers (ARs) are long, narrow filamentary regions of enhanced vertically integrated water vapor transport (IVT) that play an important role in regional water supply and hydrometeorological extremes. Here, an AR detection algorithm is applied to global reanalysis from Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), to objectively and consistently characterize ARs regionally across the continental United States (CONUS). The characteristics of AR and associated precipitation are computed at the gridpoint scale and summarized over the seven U.S. National Climate Assessment regions. ARs are most frequent in the autumn and winter in the West, spring in the Great Plains, and autumn in the Midwest and Northeast. ARs show regional and seasonal variability in basic geometry and IVT. AR IVT composites reveal annually consistent northeastward-directed moisture transport from the Pacific Ocean in the West, whereas moisture transport patterns vary seasonally across the Southern Great Plains and Midwest. Linked AR precipitation characteristics suggest that a substantial proportion of extreme events, defined as the top 5% of 3-day precipitation totals, are associated with ARs over many parts of CONUS, including the East. Regional patterns of AR-associated precipitation highlight that seasonally varying moisture transport and lifting mechanisms differ between the East and the West where orographic lifting is key. Our study aims to contribute a comprehensive and consistent CONUS-wide, regional-scale analysis of ARs in support of ongoing NCA efforts. Given the CONUS-wide role ARs play in extreme precipitation, findings motivate continued study of associated climate change impacts.

Free access