Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Binghao Jia x
  • Refine by Access: All Content x
Clear All Modify Search
Binghao Jia
,
Jianguo Liu
,
Zhenghui Xie
, and
Chunxiang Shi

Abstract

In this study, a microwave-based multisatellite merged product released from the European Space Agency’s Climate Change Initiative (ESA CCI) and two model-based simulations from the Community Land Model 4.5 (CLM4.5) and Global Land Data Assimilation System (GLDAS) were used to investigate interannual variations and trends of soil moisture in China between 1979 and 2010. They were also evaluated using in situ observations from the nationwide agrometeorological network. These three datasets show consistent drying trends for surface soil moisture in northeastern and central China, as well the eastern portion of Inner Mongolia, and wetting trends in the Tibetan Plateau, which are also identified by in situ observations. Trends in the root-zone soil moisture are in line with those of surface soil moisture seen in the CLM4.5 and GLDAS simulations obtained from most areas in China (78%–88%), except for northwestern China and southwest of the Tibetan Plateau. Moreover, the drying trend intensifies with increasing soil depth. Taking the in situ measurements as reference, it is found that ESA CCI has better accuracy in identifying the significant drying trends while CLM4.5 and GLDAS capture wetting trends better. Compared to temperature, precipitation is the primary factor responsible for these trends, which controls the direction of soil moisture changes, while increasing temperatures can also enhance soil drying during periods of decreased precipitation.

Open access
Enda Zhu
,
Chunxiang Shi
,
Shuai Sun
,
Binghao Jia
,
Yaqiang Wang
, and
Xing Yuan

Abstract

Ensemble data assimilation (DA) is an efficient approach to reduce snow simulation errors by combining observation and land surface modeling. However, there is a small spread between ensemble members of simulated snowpack, which typically occurs for a long time with 100% snow cover fraction (SCF) or snow-free conditions. Here, we apply a hybrid DA method, in which direct insertion (DI) is a supplement of the ensemble square root filter (EnSRF), to assimilate the spaceborne SCF into a land surface model, driven by China Meteorological Administration Land Data Assimilation System high-resolution climate forcings over northern China during the snow season in 2021/22. Compared to the open-loop experiment (without SCF assimilation), the root-mean-square error (RMSE) of SCF is reduced by 6% through the original EnSRF and is even lower (by 14%) in the combined DI and EnSRF (EnSRFDI) experiment. The results reveal the ability of both EnSRF and EnSRFDI to improve the SCF estimation over regions where the snow cover is low, while only EnSRFDI is able to efficiently reduce the RMSE over areas with high SCF. Moreover, the SCF assimilation is also observed to improve the snow depth and soil temperature simulations, with the Kling–Gupta efficiency (KGE) increasing at 60% and 56%–70% stations, respectively, particularly under conditions with near-freezing temperature, in which reliable simulations are typically challenging. Our results demonstrate that the EnSRFDI hybrid method can be applied for the assimilation of spaceborne observational snow cover to improve land surface simulations and snow-related operational products.

Significance Statement

Due to the small spread between the seasonal snowpack of ensemble simulations, ensemble snow cover fraction (SCF) data assimilation (DA) proves to be ineffective. Therefore, we apply a hybrid method that combines the direct insertion (DI) and ensemble square root filter (EnSRF) to assimilate the spaceborne SCF into a land surface model (LSM) driven by high-resolution climate forcings. Our results reveal the applicability of the EnSRFDI to further improve snow cover simulations over regions with high SCF. Furthermore, the DA experiments were validated through a large number of in situ observations from the China Meteorological Administration. The uncertainties of snow depth and soil temperature simulations are also slightly reduced by the SCF DAs, particularly over regions with a poor LSM performance.

Free access
Yaling Liu
,
Dongdong Chen
,
Soukayna Mouatadid
,
Xiaoliang Lu
,
Min Chen
,
Yu Cheng
,
Zhenghui Xie
,
Binghao Jia
,
Huan Wu
, and
Pierre Gentine

Abstract

Soil moisture (SM) links the water and energy cycles over the land–atmosphere interface and largely determines ecosystem functionality, positioning it as an essential player in the Earth system. Despite its importance, accurate estimation of large-scale SM remains a challenge. Here we leverage the strength of neural network (NN) and fidelity of long-term measurements to develop a daily multilayer cropland SM dataset for China from 1981 to 2013, implemented for a range of different cropping patterns. The training and testing of the NN for the five soil layers (0–50 cm, 10-cm depth each) yield R2 values of 0.65–0.70 and 0.64–0.69, respectively. Our analysis reveals that precipitation and soil properties are the two dominant factors determining SM, but cropping pattern is also crucial. In addition, our simulations of alternative cropping patterns indicate that winter wheat followed by fallow will largely alleviate the SM depletion in most parts of China. On the other hand, cropping patterns of fallow in the winter followed by maize/soybean seem to further aggravate SM decline in the Huang-Huai-Hai region and southwestern China, relative to prevalent practices of double cropping. This may be due to their low soil porosity, which results in more soil water drainage, as opposed to the case that winter crop roots help maintain SM. This multilayer cropland SM dataset with granularity of cropping patterns provides an important alternative and is complementary to modeled and satellite-retrieved products.

Full access