Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Blair C. Trewin x
  • Refine by Access: All Content x
Clear All Modify Search
Hanh Nguyen
,
Jason A. Otkin
,
Matthew C. Wheeler
,
Pandora Hope
,
Blair Trewin
, and
Christa Pudmenzky

Abstract

The seasonal cycle of the evaporative stress index (ESI) over Australia, and its relationship to observed rainfall and temperature, is examined. The ESI is defined as the standardized anomaly of the ratio of actual evapotranspiration to potential evapotranspiration, and as such, is a measure of vegetation moisture stress associated with agricultural or ecological drought. The ESI is computed using the daily output of version 6 of the Bureau of Meteorology’s landscape water balance model [Australian Water Resource Assessment Landscape (AWRA-L)] on a 5-km horizontal grid over a 45-yr period (1975–2019). Here we show that the ESI exhibits marked spatial and seasonal variability and can be used to accurately monitor drought across Australia, where ESI values less than negative one indicate drought. While the ESI is highly correlated with rainfall as expected, its relationship with temperature only becomes significant during the warmer seasons, suggesting a threshold above which temperature may affect vegetation stress. Our analysis also shows that the ESI tends to be strongly negative (i.e., indicating drought) during El Niño and positive phases of the Indian Ocean dipole (IOD), when conditions tend to be anomalously hot and dry. A negative phase of the southern annular mode also tends to drive negative ESI values during austral spring with a one-month delay.

Free access
Sophie C. Lewis
,
Stephanie A.P. Blake
,
Blair Trewin
,
Mitchell T. Black
,
Andrew J. Dowdy
,
Sarah E. Perkins-Kirkpatrick
,
Andrew D. King
, and
Jason J. Sharples
Free access
Randall S. Cerveny
,
Pierre Bessemoulin
,
Christopher C. Burt
,
Mary Ann Cooper
,
Zhang Cunjie
,
Ashraf Dewan
,
Jonathan Finch
,
Ronald L. Holle
,
Laurence Kalkstein
,
Andries Kruger
,
Tsz-cheung Lee
,
Rodney Martínez
,
M. Mohapatra
,
D. R. Pattanaik
,
Thomas C. Peterson
,
Scott Sheridan
,
Blair Trewin
,
Andrew Tait
, and
M. M. Abdel Wahab

Abstract

A World Meteorological Organization (WMO) Commission for Climatology international panel was convened to examine and assess the available evidence associated with five weather-related mortality extremes: 1) lightning (indirect), 2) lightning (direct), 3) tropical cyclones, 4) tornadoes, and 5) hail. After recommending for acceptance of only events after 1873 (the formation of the predecessor of the WMO), the committee evaluated and accepted the following mortality extremes: 1) “highest mortality (indirect strike) associated with lightning” as the 469 people killed in a lightning-caused oil tank fire in Dronka, Egypt, on 2 November 1994; 2) “highest mortality directly associated with a single lightning flash” as the lightning flash that killed 21 people in a hut in Manica Tribal Trust Lands, Zimbabwe (at time of incident, eastern Rhodesia), on 23 December 1975; 3) “highest mortality associated with a tropical cyclone” as the Bangladesh (at time of incident, East Pakistan) cyclone of 12–13 November 1970 with an estimated death toll of 300 000 people; 4) “highest mortality associated with a tornado” as the 26 April 1989 tornado that destroyed the Manikganj district, Bangladesh, with an estimated death toll of 1300 individuals; and 5) “highest mortality associated with a hailstorm” as the storm occurring near Moradabad, India, on 30 April 1888 that killed 246 people. These mortality extremes serve to further atmospheric science by giving baseline mortality values for comparison to future weather-related catastrophes and also allow for adjudication of new meteorological information as it becomes available.

Full access
Stephen Baxter
,
Gerald D Bell
,
Eric S Blake
,
Francis G Bringas
,
Suzana J Camargo
,
Lin Chen
,
Caio A. S Coelho
,
Ricardo Domingues
,
Stanley B Goldenberg
,
Gustavo Goni
,
Nicolas Fauchereau
,
Michael S Halpert
,
Qiong He
,
Philip J Klotzbach
,
John A Knaff
,
Michelle L'Heureux
,
Chris W Landsea
,
I.-I Lin
,
Andrew M Lorrey
,
Jing-Jia Luo
,
Andrew D Magee
,
Richard J Pasch
,
Petra R Pearce
,
Alexandre B Pezza
,
Matthew Rosencrans
,
Blair C Trewin
,
Ryan E Truchelut
,
Bin Wang
,
H Wang
,
Kimberly M Wood
, and
John-Mark Woolley
Free access
Howard J. Diamond
,
Carl J. Schreck III
,
Emily J. Becker
,
Gerald D. Bell
,
Eric S. Blake
,
Stephanie Bond
,
Francis G. Bringas
,
Suzana J. Camargo
,
Lin Chen
,
Caio A. S. Coelho
,
Ricardo Domingues
,
Stanley B. Goldenberg
,
Gustavo Goni
,
Nicolas Fauchereau
,
Michael S. Halpert
,
Qiong He
,
Philip J. Klotzbach
,
John A. Knaff
,
Michelle L'Heureux
,
Chris W. Landsea
,
I.-I. Lin
,
Andrew M. Lorrey
,
Jing-Jia Luo
,
Kyle MacRitchie
,
Andrew D. Magee
,
Ben Noll
,
Richard J. Pasch
,
Alexandre B. Pezza
,
Matthew Rosencrans
,
Michael K. Tippet
,
Blair C. Trewin
,
Ryan E. Truchelut
,
Bin Wang
,
Hui Wang
,
Kimberly M. Wood
,
John-Mark Woolley
, and
Steven H. Young
Free access
Howard J. Diamond
,
Carl J. Schreck III
,
Adam Allgood
,
Emily J. Becker
,
Eric S. Blake
,
Francis G. Bringas
,
Suzana J. Camargo
,
Lin Chen
,
Caio A. S. Coelho
,
Nicolas Fauchereau
,
Stanley B. Goldenberg
,
Gustavo Goni
,
Michael S. Halpert
,
Qiong He
,
Zeng-Zhen Hu
,
Philip J. Klotzbach
,
John A. Knaff
,
Arun Kumar
,
Chris W. Landsea
,
Michelle L’Heureux
,
I.-I. Lin
,
Andrew M. Lorrey
,
Jing-Jia Luo
,
Andrew D. Magee
,
Richard J. Pasch
,
Alexandre B. Pezza
,
Matthew Rosencrans
,
Blair C. Trewin
,
Ryan E. Truchelut
,
Bin Wang
,
Hui Wang
,
Kimberly M. Wood
, and
John-Mark Woolley
Free access