Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Bo Liu x
  • All content x
Clear All Modify Search
Xiaohe An, Bo Wu, Tianjun Zhou, and Bo Liu

Abstract

Interdecadal Pacific Oscillation (IPO) and Atlantic Multidecadal Oscillation (AMO), two leading modes of decadal climate variability, are not independent. It was proposed that ENSO-like sea surface temperature (SST) variations play a central role in the Pacific responses to the AMO forcing. However, observational analyses indicate that the AMO-related SST anomalies in the tropical Pacific are far weaker than those in the extratropical North Pacific. Here, we show that SST in the North Pacific is tied to the AMO forcing by convective heating associated with precipitation over the tropical Pacific, instead of by SST there, based on an ensemble of pacemaker experiments with North Atlantic SST restored to the observation in a coupled general circulation model. The AMO modulates precipitation over the equatorial and tropical southwestern Pacific through exciting an anomalous zonal circulation and an interhemispheric asymmetry of net moist static energy input into the atmosphere. The convective heating associated with the precipitation anomalies drive SST variations in the North Pacific through a teleconnection, but remarkably weaken the ENSO-like SST anomalies through a thermocline damping effect. This study has implications that the IPO is a combined mode generated by both AMO forcing and local air-sea interactions, but the IPO-related global-warming acceleration/slowdown is independent of the AMO.

Restricted access
Yu Huang, Bo Wu, Tim Li, Tianjun Zhou, and Bo Liu

Abstract

The interdecadal variability of basinwide sea surface temperature anomalies (SSTAs) in the tropical Indian Ocean (TIO), referred to as the interdecadal Indian Ocean basin mode (ID-IOBM), is caused by remote forcing of the interdecadal Pacific oscillation (IPO), as demonstrated by the observational datasets and tropical Pacific pacemaker experiments of the Community Earth System Model (CESM). It is noted that the growth of the ID-IOBM shows a season-dependent characteristic, with a maximum tendency of mixed layer heat anomalies occurring in early boreal winter. Three factors contribute to this maximum tendency. In response to the positive IPO forcing, the eastern TIO is covered by the descending branch of the anomalous Walker circulation. Thus, the convection over the southeastern TIO is suppressed, which increases local downward shortwave radiative fluxes. Meanwhile, the equatorial easterly anomalies to the west of the suppressed convection weaken the background mean westerly and thus decrease the upward latent heat fluxes over the equatorial Indian Ocean. Third, anomalous westward Ekman currents driven by the equatorial easterly anomalies advect climatological warm water westward and thus warm the western TIO. In summer, the TIO is out of the control of the positive IPO remote forcing. The ID-IOBM gradually decays due to the Newtonian damping effect.

Open access
Yanjun Wang, Bo Liu, Buda Su, Jianqing Zhai, and Marco Gemmer

Abstract

Actual evaporation in the Yangtze River basin is calculated by the complementary relationship approach—that is, the advection–aridity (AA) model with parameter validation from 1961 to 2007—and simulated by the general circulation model (GCM) ECHAM5–Max Planck Institute Ocean Model (MPI-OM) from 1961 to 2000. Trends of annual and seasonal estimated actual evaporation and air temperature, net radiation, saturation vapor pressure deficit, wind speed, and precipitation are examined by the linear regression method and nonparametric Mann–Kendall test. The stepwise regression method is used to analyze the significance to reference evapotranspiration of independent variables.

Results show that a significant decreasing trend in annual reference evaporation is caused by a significant decline in wind speed. The annual actual evaporation decreases in the upper and midlower Yangtze reaches; more significantly in the AA model [–9.3 mm (10 yr)−1] than in the GCM [−3.6 mm (10 yr)−1]. Significant negative trends are found in spring and autumn, but they show reverse trends in summer and winter within the two methods, which is caused by the different contributors to the seasonal actual evaporation in the two methods.

Decreasing net radiation is the main contributor to annual and spring actual evaporation in the two methods. Decreasing precipitation and net radiation are the main contributors to decreasing autumn actual evaporation in the AA model and the GCM. Increasing net radiation and decreasing precipitation are the main contributors to summer and winter actual evaporation in the GCM. Decreasing net radiation and increasing precipitation are the main contributors to decreasing summer and increasing winter actual evaporation in the AA model.

Full access
Xuejian Cao, Guangheng Ni, Youcun Qi, and Bo Liu

Abstract

The accessibility of high-resolution surface data enables fine distributed modeling for urban flooding. However, the surface routing processes between nonhomogeneous land cover components remain in most grid units, due to the high spatial heterogeneity of urban surfaces. Limited by the great difficulty in the acquisition, subgrid routing information (SRI) is always ignored in high-resolution urban flood modeling, and more importantly, the potential impacts of missing SRI on flood forecasting are still less understood. In this study, 54 urban-oriented scenarios of subgrid routing schemes are designed at an isolated grid, including three types of land parcels, two routing directions, and nine routing percents. The impacts of missing SRI are evaluated comprehensively under 60 different rainfall scenarios, in terms of the peak runoff (PR) and the runoff coefficient (RC). Furthermore, the influence mechanism is revealed as well to explain the discrepancy of the impacts under different conditions. Results show the missing of the routing process from impervious to pervious areas leads to significant impacts on the simulation of both PR and RC. Overestimated RC is detected, however, the impacts on PR are bidirectional depending on the rainfall intensity. Overestimation of PR due to missing SRI is observed in light rainfall events, but the opposite effect is identified under heavy rainfall conditions. This study highlights the importance of incorporating the SRI for urban flood forecasting to avoid underestimating the hazard risk in heavy rainfall. Simultaneously, it identifies that blindly utilizing infiltration-based green infrastructure is not feasible in urban stormwater management, due to the possible increase in peak runoff.

Restricted access
Bo Liu, Boujemaa Ait-El-Fquih, and Ibrahim Hoteit

Abstract

The Bayesian filtering problem for data assimilation is considered following the kernel-based ensemble Gaussian mixture filtering (EnGMF) approach introduced by Anderson and Anderson. In this approach, the posterior distribution of the system state is propagated with the model using the ensemble Monte Carlo method, providing a forecast ensemble that is then used to construct a prior Gaussian mixture (GM) based on the kernel density estimator. This results in two update steps: a Kalman filter (KF)-like update of the ensemble members and a particle filter (PF)-like update of the weights, followed by a resampling step to start a new forecast cycle. After formulating EnGMF for any observational operator, the influence of the bandwidth parameter of the kernel function on the covariance of the posterior distribution is analyzed. Then the focus is on two aspects: (i) the efficient implementation of EnGMF with (relatively) small ensembles, where a new deterministic resampling strategy is proposed preserving the first two moments of the posterior GM to limit the sampling error; and (ii) the analysis of the effect of the bandwidth parameter on contributions of KF and PF updates and on the weights variance. Numerical results using the Lorenz-96 model are presented to assess the behavior of EnGMF with deterministic resampling, study its sensitivity to different parameters and settings, and evaluate its performance against ensemble KFs. The proposed EnGMF approach with deterministic resampling suggests improved estimates in all tested scenarios, and is shown to require less localization and to be less sensitive to the choice of filtering parameters.

Full access
Hong-Bo Liu, Jing Yang, Da-Lin Zhang, and Bin Wang

Abstract

During the mei-yu season of the summer of 2003, the Yangtze and Huai River basin (YHRB) encountered anomalously heavy rainfall, and the northern YHRB (nYHRB) suffered a severe flood because of five continuous extreme rainfall events. A spectral analysis of daily rainfall data over YHRB reveals two dominant frequency modes: one peak on day 14 and the other on day 4 (i.e., the quasi-biweekly and synoptic-scale mode, respectively). Results indicate that the two scales of disturbances contributed southwesterly and northeasterly anomalies, respectively, to the mei-yu frontal convergence over the southern YHRB (sYHRB) at the peak wet phase. An analysis of bandpass-filtered circulations shows that the lower and upper regions of the troposphere were fully coupled at the quasi-biweekly scale, and a lower-level cyclonic anomaly over sYHRB was phase locked with an anticyclonic anomaly over the Philippines. At the synoptic scale, the strong northeasterly components of an anticyclonic anomaly with a deep cold and dry layer helped generate the heavy rainfall over sYHRB. Results also indicate the passages of five synoptic-scale disturbances during the nYHRB rainfall. Like the sYHRB rainfall, these disturbances originated from the periodical generations of cyclonic and anticyclonic anomalies at the downstream of the Tibetan Plateau. The nYHRB rainfalls were generated as these disturbances moved northeastward under the influence of monsoonal flows and higher-latitude eastward-propagating Rossby wave trains. It is concluded that the sYHRB heavy rainfall resulted from the superposition of quasi-biweekly and synoptic-scale disturbances, whereas the intermittent passages of five synoptic-scale disturbances led to the flooding rainfall over nYHRB.

Full access
Bo Zhang, Ge Liu, Yuejian Zhu, and Ning Shi

Abstract

Based on a recently developed approach that can recognize both persistent blocking and ridge events effectively, the contributions of the frequency of these persistent events (FOPE) over different regions in Eurasia to precipitation over eastern China were investigated. The results reveal that, the FOPE over the longitudinal range of 110°–130°E, near the Stanovoy Mountains and the Okhotsk Sea, is significantly correlated with precipitation over the middle and lower reaches of the Yangtze River (MLRYR) during summer, particularly in August. The preceding full July (or 1–20 July) mean Balkhash Lake–Caucasus geopotential height index, which measures the combined effect of the Balkhash Lake and Caucasus geopotential height anomalies, is closely related to the August geopotential height anomaly around the Stanovoy Mountains and the Okhotsk Sea, and can therefore reflect the August 110°–130°E FOPE. The predictability based on this preceding atmospheric signal seems to be attributable to slow-varying atmospheric processes on a subseasonal (20-day mean) time scale. On this time scale, the Balkhash Lake and Caucasus geopotential height anomalies occur prior to, and seem to modulate, the geopotential height anomaly around the Stanovoy Mountains and the associated 110°–130°E FOPE through an eastward extension and through exciting a positive–negative–positive pattern in 500-hPa geopotential heights, respectively. As a result of the slow-varying atmospheric processes, this preceding atmospheric signal performs well in predicting the August 110°–130°E FOPE, which also facilitates the prediction of the MLRYR precipitation.

Full access
Lin Liu, Jianping Guo, Wen Chen, Renguang Wu, Lin Wang, Hainan Gong, Bo Liu, Dandan Chen, and Jian Li

Abstract

The present study applies the empirical orthogonal function (EOF) method to investigate the interannual covariations of East Asian–Australian land precipitation (EAALP) during boreal winter based on observational and reanalysis datasets. The first mode of EAALP variations is characterized by opposite-sign anomalies between East Asia (EA) and Australia (AUS). The second mode features an anomaly pattern over EA similar to the first mode, but with a southwest–northeast dipole structure over AUS. El Niño–Southern Oscillation (ENSO) is found to be a primary factor in modulating the interannual variations of land precipitation over EA and western AUS. By comparison, the Indian Ocean subtropical dipole mode (IOSD) plays an important role in the formation of precipitation anomalies over northeastern AUS, mainly through a zonal vertical circulation spanning from the southern Indian Ocean (SIO) to northern AUS. In addition, the ENSO-independent cold sea surface temperature (SST) anomalies in the western North Pacific (WNP) impact the formation of the second mode. Using the atmospheric general circulation model ECHAM5, three 40-yr numerical simulation experiments differing in specified SST forcings verify the impacts of the IOSD and WNP SST anomalies. Further composite analyses indicate that the dominant patterns of EAALP variability are largely determined by the out-of-phase and in-phase combinations of ENSO and IOSD. These results suggest that in addition to ENSO, IOSD should be considered as another crucial factor influencing the EAALP variability during the boreal winter, which has large implications for improved prediction of EAALP land precipitation on the interannual time scale.

Full access
Meiyu Chang, Bo Liu, Cristian Martinez-Villalobos, Guoyu Ren, Shangfeng Li, and Tianjun Zhou

Abstract

Precipitation accumulations, integrated over rainfall events, are investigated using hourly data across continental China during the warm season (May–October) from 1980 to 2015. Physically, the probability of precipitation accumulations drops slowly with event size up to an approximately exponential cutoff scale s L where probability drops much faster. Hence s L can be used as an indicator of high accumulation percentiles (i.e., extreme precipitation accumulations). Overall, the climatology of s L over continental China is about 54 mm. In terms of cutoff changes, the current warming stage (1980–2015) is divided into two periods, 1980–97 and 1998–2015. We find that the cutoff in 1998–2015 increases about 5.6% compared with that of 1980–97, with an average station increase of 4.7%. Regionally, s L increases are observed over East China (10.9% ± 1.5%), Northwest China (9.7% ± 2.5%), South China (9.4% ± 1.4%), southern Southwest China (5.6% ± 1.2%), and Central China (5.3% ± 1.0%), with decreases over North China (−10.3% ± 1.3%), Northeast China (−4.9% ± 1.5%), and northern Southwest China (−3.9% ± 1.8%). The conditional risk ratios for five subregions with increased cutoff s L are all greater than 1.0, indicating an increased risk of large precipitation accumulations in the most recent period. For high precipitation accumulations larger than the 99th percentile of accumulation s 99, the risk of extreme precipitation over these regions can increase above 20% except for South China. These increases of extreme accumulations can be largely explained by the extended duration of extreme accumulation events, especially for “extremely extreme” precipitation greater than s 99.

Restricted access
Ming-Yang He, Hong-Bo Liu, Bin Wang, and Da-Lin Zhang

Abstract

In this study, the three-dimensional structures and diurnal evolution of a typical low-level jet (LLJ) with a maximum speed of 24 m s−1 occurring in the 850–800-hPa layer are examined using both large-scale analysis and a high-resolution model simulation. The LLJ occurred on the eastern foothills of the Yun-Gui Plateau in south China from 1400 LST 29 June to 1400 LST 30 June 2003. The effects of surface radiative heating, topography, and latent heat release on the development of the LLJ case are also studied. Results show that a western Pacific Ocean subtropical high and a low pressure system on the respective southeast and northwest sides of the LLJ provide a favorable large-scale mean pressure pattern for the LLJ development. The LLJ reaches its peak intensity at 850 hPa near 0200 LST with wind directions veering from southerly before sunset to southwesterly at midnight. A hodograph at the LLJ core shows a complete diurnal cycle of the horizontal wind with a radius of 5.5 m s−1. It is found that in an LLJ coordinates system the along-LLJ geostrophic component regulates the distribution and 65% of the intensity of LLJ, whereas the ageostrophic component contributes to the clockwise rotation, thus leading to the formation and weakening of the LLJ during night- and daytime, respectively. Numerical sensitivity experiments confirm the surface radiative heating as the key factor in determining the formation of the nocturnal LLJ. The existence of the Yun-Gui Plateau, and the downstream condensational heating along the mei-yu front play secondary roles in the LLJ formation.

Full access