Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Bohar Singh x
- Refine by Access: All Content x
Abstract
Long-term changes in land–atmosphere interactions during spring and summer are examined over North America. A suite of models from phase 5 of the Coupled Model Intercomparison Project simulating preindustrial, historical, and severe future climate change scenarios are examined for changes in soil moisture, surface fluxes, atmospheric boundary layer characteristics, and metrics of land–atmosphere coupling.
Simulations of changes from preindustrial to modern conditions show warming brings stronger surface fluxes at high latitudes, while subtropical regions of North America respond with drier conditions. There is a clear anthropogenic aerosol response in midlatitudes that reduces surface radiation and heat fluxes, leading to shallower boundary layers and lower cloud base. Over the Great Plains, the signal does not reflect a purely radiatively forced response, showing evidence that the expansion of agriculture may have offset the aerosol impacts on the surface energy and water cycle.
Future changes show soils are projected to dry across North America, even though precipitation increases north of a line that retreats poleward from spring to summer. Latent heat flux also has a north–south dipole of change, increasing north and decreasing south of a line that also moves northward with the changing season. Metrics of land–atmosphere feedback increase over most of the continent but are strongest where latent heat flux increases in the same location and season where precipitation decreases. Combined with broadly elevated cloud bases and deeper boundary layers, land–atmosphere interactions are projected to become more important in the future with possible consequences for seasonal climate prediction.
Abstract
Long-term changes in land–atmosphere interactions during spring and summer are examined over North America. A suite of models from phase 5 of the Coupled Model Intercomparison Project simulating preindustrial, historical, and severe future climate change scenarios are examined for changes in soil moisture, surface fluxes, atmospheric boundary layer characteristics, and metrics of land–atmosphere coupling.
Simulations of changes from preindustrial to modern conditions show warming brings stronger surface fluxes at high latitudes, while subtropical regions of North America respond with drier conditions. There is a clear anthropogenic aerosol response in midlatitudes that reduces surface radiation and heat fluxes, leading to shallower boundary layers and lower cloud base. Over the Great Plains, the signal does not reflect a purely radiatively forced response, showing evidence that the expansion of agriculture may have offset the aerosol impacts on the surface energy and water cycle.
Future changes show soils are projected to dry across North America, even though precipitation increases north of a line that retreats poleward from spring to summer. Latent heat flux also has a north–south dipole of change, increasing north and decreasing south of a line that also moves northward with the changing season. Metrics of land–atmosphere feedback increase over most of the continent but are strongest where latent heat flux increases in the same location and season where precipitation decreases. Combined with broadly elevated cloud bases and deeper boundary layers, land–atmosphere interactions are projected to become more important in the future with possible consequences for seasonal climate prediction.
Abstract
Data from 15 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) for preindustrial, historical, and future climate change experiments are examined for consensus changes in land surface variables, fluxes, and metrics relevant to land–atmosphere interactions. Consensus changes in soil moisture and latent heat fluxes for past-to-present and present-to-future periods are consistent with CMIP3 simulations, showing a general drying trend over land (less soil moisture, less evaporation) over most of the globe, with the notable exception of high northern latitudes during winter. Sensible heat flux and net radiation declined from preindustrial times to current conditions according to the multimodel consensus, mainly due to increasing aerosols, but that trend reverses abruptly in the future projection. No broad trends are found in soil moisture memory except for reductions during boreal winter associated with high-latitude warming and diminution of frozen soils. Land–atmosphere coupling is projected to increase in the future across most of the globe, meaning a greater control by soil moisture variations on surface fluxes and the lower troposphere. There is also a strong consensus for a deepening atmospheric boundary layer and diminished gradients across the entrainment zone at the top of the boundary layer, indicating that the land surface feedback on the atmosphere should become stronger both in absolute terms and relative to the influence of the conditions of the free atmosphere. Coupled with the trend toward greater hydrologic extremes such as severe droughts, the land surface seems likely to play a greater role in amplifying both extremes and trends in climate on subseasonal and longer time scales.
Abstract
Data from 15 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) for preindustrial, historical, and future climate change experiments are examined for consensus changes in land surface variables, fluxes, and metrics relevant to land–atmosphere interactions. Consensus changes in soil moisture and latent heat fluxes for past-to-present and present-to-future periods are consistent with CMIP3 simulations, showing a general drying trend over land (less soil moisture, less evaporation) over most of the globe, with the notable exception of high northern latitudes during winter. Sensible heat flux and net radiation declined from preindustrial times to current conditions according to the multimodel consensus, mainly due to increasing aerosols, but that trend reverses abruptly in the future projection. No broad trends are found in soil moisture memory except for reductions during boreal winter associated with high-latitude warming and diminution of frozen soils. Land–atmosphere coupling is projected to increase in the future across most of the globe, meaning a greater control by soil moisture variations on surface fluxes and the lower troposphere. There is also a strong consensus for a deepening atmospheric boundary layer and diminished gradients across the entrainment zone at the top of the boundary layer, indicating that the land surface feedback on the atmosphere should become stronger both in absolute terms and relative to the influence of the conditions of the free atmosphere. Coupled with the trend toward greater hydrologic extremes such as severe droughts, the land surface seems likely to play a greater role in amplifying both extremes and trends in climate on subseasonal and longer time scales.
Abstract
A global multimodel probabilistic subseasonal forecast system for precipitation and near-surface temperature is developed based on three NOAA ensemble prediction systems that make their forecasts available publicly in real time as part of the Subseasonal Experiment (SubX). The weekly and biweekly ensemble means of precipitation and temperature of each model are individually calibrated at each grid point using extended logistic regression, prior to forming equal-weighted multimodel ensemble (MME) probabilistic forecasts. Reforecast skill of week-3–4 precipitation and temperature is assessed in terms of the cross-validated ranked probability skill score (RPSS) and reliability diagram. The multimodel reforecasts are shown to be well calibrated for both variables. Precipitation is moderately skillful over many tropical land regions, including Latin America, sub-Saharan Africa and Southeast Asia, and over subtropical South America, Africa, and Australia. Near-surface temperature skill is considerably higher than for precipitation and extends into the extratropics as well. The multimodel RPSS skill of both precipitation and temperature is shown to exceed that of any of the constituent models over Indonesia, South Asia, South America, and East Africa in all seasons. An example real-time week-3–4 global forecast for 13–26 November 2021 is illustrated and shown to bear the hallmarks of the combined influences of a moderate Madden–Julian oscillation event as well as weak–moderate ongoing La Niña event.
Significance Statement
This paper develops a system for forecasting of precipitation and temperatures globally over land, several weeks in advance, with a focus on biweekly averaged conditions between three and four weeks ahead. The system provides the likelihood of biweekly and weekly conditions being below, near, or above their long-term averages, as well the probability of exceeding (or not exceeding) any threshold value. Using historical data, the precipitation forecasts are demonstrated to have skill in many tropical regions, and the temperature forecasts are more widely skillful. While weather and seasonal range forecasts have become quite generally available, this is one of the first examples of a publicly available, calibrated multimodel probabilistic real-time forecasting system for the subseasonal range.
Abstract
A global multimodel probabilistic subseasonal forecast system for precipitation and near-surface temperature is developed based on three NOAA ensemble prediction systems that make their forecasts available publicly in real time as part of the Subseasonal Experiment (SubX). The weekly and biweekly ensemble means of precipitation and temperature of each model are individually calibrated at each grid point using extended logistic regression, prior to forming equal-weighted multimodel ensemble (MME) probabilistic forecasts. Reforecast skill of week-3–4 precipitation and temperature is assessed in terms of the cross-validated ranked probability skill score (RPSS) and reliability diagram. The multimodel reforecasts are shown to be well calibrated for both variables. Precipitation is moderately skillful over many tropical land regions, including Latin America, sub-Saharan Africa and Southeast Asia, and over subtropical South America, Africa, and Australia. Near-surface temperature skill is considerably higher than for precipitation and extends into the extratropics as well. The multimodel RPSS skill of both precipitation and temperature is shown to exceed that of any of the constituent models over Indonesia, South Asia, South America, and East Africa in all seasons. An example real-time week-3–4 global forecast for 13–26 November 2021 is illustrated and shown to bear the hallmarks of the combined influences of a moderate Madden–Julian oscillation event as well as weak–moderate ongoing La Niña event.
Significance Statement
This paper develops a system for forecasting of precipitation and temperatures globally over land, several weeks in advance, with a focus on biweekly averaged conditions between three and four weeks ahead. The system provides the likelihood of biweekly and weekly conditions being below, near, or above their long-term averages, as well the probability of exceeding (or not exceeding) any threshold value. Using historical data, the precipitation forecasts are demonstrated to have skill in many tropical regions, and the temperature forecasts are more widely skillful. While weather and seasonal range forecasts have become quite generally available, this is one of the first examples of a publicly available, calibrated multimodel probabilistic real-time forecasting system for the subseasonal range.
Abstract
Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers’ model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.
Abstract
Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers’ model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.