Search Results
You are looking at 1 - 10 of 13 items for
- Author or Editor: Bong-Chul Seo x
- Refine by Access: All Content x
Abstract
This study explores the scale effects of radar rainfall accumulation fields generated using the new super-resolution level II radar reflectivity data acquired by the Next Generation Weather Radar (NEXRAD) network of the Weather Surveillance Radar-1988 Doppler (WSR-88D) weather radars. Eleven months (May 2008–August 2009, exclusive of winter months) of high-density rain gauge network data are used to describe the uncertainty structure of radar rainfall and rain gauge representativeness with respect to five spatial scales (0.5, 1, 2, 4, and 8 km). While both uncertainties of gauge representativeness and radar rainfall show simple scaling behavior, the uncertainty of radar rainfall is characterized by an almost 3 times greater standard error at higher temporal and spatial resolutions (15 min and 0.5 km) than at lower resolutions (1 h and 8 km). These results may have implications for error propagation through distributed hydrologic models that require high-resolution rainfall input. Another interesting result of the study is that uncertainty obtained by averaging rainfall products produced from the super-resolution reflectivity data is slightly lower at smaller scales than the uncertainty of the corresponding resolution products produced using averaged (recombined) reflectivity data.
Abstract
This study explores the scale effects of radar rainfall accumulation fields generated using the new super-resolution level II radar reflectivity data acquired by the Next Generation Weather Radar (NEXRAD) network of the Weather Surveillance Radar-1988 Doppler (WSR-88D) weather radars. Eleven months (May 2008–August 2009, exclusive of winter months) of high-density rain gauge network data are used to describe the uncertainty structure of radar rainfall and rain gauge representativeness with respect to five spatial scales (0.5, 1, 2, 4, and 8 km). While both uncertainties of gauge representativeness and radar rainfall show simple scaling behavior, the uncertainty of radar rainfall is characterized by an almost 3 times greater standard error at higher temporal and spatial resolutions (15 min and 0.5 km) than at lower resolutions (1 h and 8 km). These results may have implications for error propagation through distributed hydrologic models that require high-resolution rainfall input. Another interesting result of the study is that uncertainty obtained by averaging rainfall products produced from the super-resolution reflectivity data is slightly lower at smaller scales than the uncertainty of the corresponding resolution products produced using averaged (recombined) reflectivity data.
Abstract
IMERG provides state-of-the-art satellite-based precipitation estimates that combine observations from multiple satellite platforms. This study evaluates IMERG products by examining hydrologic simulations of streamflow at a range of spatial scales. The main objective of this study is to assess the predictive utility of the near-real-time product (IMERG-Early). The assessment also includes the IMERG-Final product that is not available in real time. The authors used MRMS precipitation estimates and USGS streamflow observation data as references for the precipitation and streamflow evaluations during a 5-yr period (2016–20). The precipitation evaluation results show that IMERG-Early yields significant overestimations, particularly during warm months, with higher variability in its conditional distributions, whereas the performance of IMERG-Final seems unbiased. The authors performed hydrologic simulations using the Iowa Flood Center’s Hillslope Link Model with three precipitation forcing products, i.e., MRMS, IMERG-Early, and IMERG-Final. The simulation results reveal that IMERG-Early leads to high hit and false alarm rates due to its overestimation in precipitation and has almost no skill, as measured by the overall performance metric Kling–Gupta efficiency (KGE), in streamflow prediction regarding basin scales ranging from 10 to 30 000 km2. This indicates that the product requires a bias correction before it is useful for real-time flood prediction. The streamflow prediction performance of IMERG-Final seems comparable to that of MRMS at spatial scales greater than 100 km2. This scale limitation is attributable to the IMERG’s product spatial resolution that is inadequate to capture the small-scale variability of precipitation.
Abstract
IMERG provides state-of-the-art satellite-based precipitation estimates that combine observations from multiple satellite platforms. This study evaluates IMERG products by examining hydrologic simulations of streamflow at a range of spatial scales. The main objective of this study is to assess the predictive utility of the near-real-time product (IMERG-Early). The assessment also includes the IMERG-Final product that is not available in real time. The authors used MRMS precipitation estimates and USGS streamflow observation data as references for the precipitation and streamflow evaluations during a 5-yr period (2016–20). The precipitation evaluation results show that IMERG-Early yields significant overestimations, particularly during warm months, with higher variability in its conditional distributions, whereas the performance of IMERG-Final seems unbiased. The authors performed hydrologic simulations using the Iowa Flood Center’s Hillslope Link Model with three precipitation forcing products, i.e., MRMS, IMERG-Early, and IMERG-Final. The simulation results reveal that IMERG-Early leads to high hit and false alarm rates due to its overestimation in precipitation and has almost no skill, as measured by the overall performance metric Kling–Gupta efficiency (KGE), in streamflow prediction regarding basin scales ranging from 10 to 30 000 km2. This indicates that the product requires a bias correction before it is useful for real-time flood prediction. The streamflow prediction performance of IMERG-Final seems comparable to that of MRMS at spatial scales greater than 100 km2. This scale limitation is attributable to the IMERG’s product spatial resolution that is inadequate to capture the small-scale variability of precipitation.
Abstract
This study demonstrates an implementation of the prototype quantitative precipitation R estimation algorithm using specific attenuation A for S-band polarimetric radar. The performance of R(A) algorithm is assessed, compared to the conventional algorithm using radar reflectivity Z, at multiple temporal scales. Because the factor α, defined as the net ratio of A to specific differential phase, is a key parameter of the algorithm characterized by drop size distributions (e.g., differential reflectivity Z dr dependence on Z), the estimation equations of α and a proper number of Z dr–Z samples required for a reliable α estimation are examined. Based on the dynamic estimation of α, the event-based evaluation using hourly rain gauge observations reveals that the performance of R(A) is superior to that of R(Z), with better agreement and lower variability. Despite its superiority, the study finds that R(A) leads to quite consistent overestimations of about 10%–30%. It is demonstrated that the application of uniform α over the entire radar domain yields the observed uncertainty because of the heterogeneity of precipitation in the domain. A climatological range-dependent feature of R(A) and R(Z) is inspected in the multiyear evaluation at yearly scale using rain totals for April–October. While R(Z) exposes a systematic shift and overestimation, each of which arise from the radar miscalibration and bright band effects, R(A) combining with multiple R(Z) values for solid/mixed precipitation shows relatively robust performance without those effects. The immunity of R(A) to partial beam blockage (PBB) based on both qualitative and quantitative analyses is also verified. However, the capability of R(A) regarding PBB is limited by the presence of the melting layer and its application requirement for the total span of differential phase (e.g., 3°), which is another challenge for light rain.
Abstract
This study demonstrates an implementation of the prototype quantitative precipitation R estimation algorithm using specific attenuation A for S-band polarimetric radar. The performance of R(A) algorithm is assessed, compared to the conventional algorithm using radar reflectivity Z, at multiple temporal scales. Because the factor α, defined as the net ratio of A to specific differential phase, is a key parameter of the algorithm characterized by drop size distributions (e.g., differential reflectivity Z dr dependence on Z), the estimation equations of α and a proper number of Z dr–Z samples required for a reliable α estimation are examined. Based on the dynamic estimation of α, the event-based evaluation using hourly rain gauge observations reveals that the performance of R(A) is superior to that of R(Z), with better agreement and lower variability. Despite its superiority, the study finds that R(A) leads to quite consistent overestimations of about 10%–30%. It is demonstrated that the application of uniform α over the entire radar domain yields the observed uncertainty because of the heterogeneity of precipitation in the domain. A climatological range-dependent feature of R(A) and R(Z) is inspected in the multiyear evaluation at yearly scale using rain totals for April–October. While R(Z) exposes a systematic shift and overestimation, each of which arise from the radar miscalibration and bright band effects, R(A) combining with multiple R(Z) values for solid/mixed precipitation shows relatively robust performance without those effects. The immunity of R(A) to partial beam blockage (PBB) based on both qualitative and quantitative analyses is also verified. However, the capability of R(A) regarding PBB is limited by the presence of the melting layer and its application requirement for the total span of differential phase (e.g., 3°), which is another challenge for light rain.
Abstract
This study addresses the uncertainty of High-Resolution Rapid Refresh (HRRR) quantitative precipitation forecasts (QPFs), which were recently appended to the operational hydrologic forecasting framework. In this study, we examine the uncertainty features of HRRR QPFs for an Iowa flooding event that occurred in September 2016. Our evaluation of HRRR QPFs is based on the conventional approach of QPF verification and the analysis of mean areal precipitation (MAP) with respect to forecast lead time. The QPF verification results show that the precipitation forecast skill of HRRR significantly drops during short lead times and then gradually decreases for further lead times. The MAP analysis also demonstrates that the QPF error sharply increases during short lead times and starts decreasing slightly beyond 4-h lead time. We found that the variability of QPF error measured in terms of MAP decreases as basin scale and lead time become larger and longer, respectively. The effects of QPF uncertainty on hydrologic prediction are quantified through the hillslope-link model (HLM) simulations using hydrologic performance metrics (e.g., Kling–Gupta efficiency). The simulation results agree to some degree with those from the MAP analysis, finding that the performance achieved from the QPF forcing decreases during 1–3-h lead times and starts increasing with 4–6-h lead times. The best performance acquired at the 1-h lead time does not seem acceptable because of the large overestimation of the flood peak, along with an erroneous early peak that is not observed in streamflow observations. This study provides further evidence that HRRR contains a well-known weakness at short lead times, and the QPF uncertainty (e.g., bias) described as a function of forecast lead times should be corrected before its use in hydrologic prediction.
Abstract
This study addresses the uncertainty of High-Resolution Rapid Refresh (HRRR) quantitative precipitation forecasts (QPFs), which were recently appended to the operational hydrologic forecasting framework. In this study, we examine the uncertainty features of HRRR QPFs for an Iowa flooding event that occurred in September 2016. Our evaluation of HRRR QPFs is based on the conventional approach of QPF verification and the analysis of mean areal precipitation (MAP) with respect to forecast lead time. The QPF verification results show that the precipitation forecast skill of HRRR significantly drops during short lead times and then gradually decreases for further lead times. The MAP analysis also demonstrates that the QPF error sharply increases during short lead times and starts decreasing slightly beyond 4-h lead time. We found that the variability of QPF error measured in terms of MAP decreases as basin scale and lead time become larger and longer, respectively. The effects of QPF uncertainty on hydrologic prediction are quantified through the hillslope-link model (HLM) simulations using hydrologic performance metrics (e.g., Kling–Gupta efficiency). The simulation results agree to some degree with those from the MAP analysis, finding that the performance achieved from the QPF forcing decreases during 1–3-h lead times and starts increasing with 4–6-h lead times. The best performance acquired at the 1-h lead time does not seem acceptable because of the large overestimation of the flood peak, along with an erroneous early peak that is not observed in streamflow observations. This study provides further evidence that HRRR contains a well-known weakness at short lead times, and the QPF uncertainty (e.g., bias) described as a function of forecast lead times should be corrected before its use in hydrologic prediction.
Abstract
Rainfall maps that are derived from satellite observations provide hydrologists with an unprecedented opportunity to forecast floods globally. However, the limitations of using these precipitation estimates with respect to producing reliable flood forecasts at multiple scales are not well understood. To address the scientific and practical question of applicability of space-based rainfall products for global flood forecasting, a data evaluation framework is developed that allows tracking the rainfall effects in space and time across scales in the river network. This provides insights on the effects of rainfall product resolution and uncertainty. Obtaining such insights is not possible when the hydrologic evaluation is based on discharge observations from single gauges. The proposed framework also explores the ability of hydrologic model structure to answer questions pertaining to the utility of space-based rainfall observations for flood forecasting. To illustrate the framework, hydrometeorological data collected during the Iowa Flood Studies (IFloodS) campaign in Iowa are used to perform a hydrologic simulation using two different rainfall–runoff model structures and three rainfall products, two of which are radar based [stage IV and Iowa Flood Center (IFC)] and one satellite based [TMPA–Research Version (RV)]. This allows for exploring the differences in rainfall estimates at several spatial and temporal scales and provides improved understanding of how these differences affect flood predictions at multiple basin scales. The framework allows for exploring the differences in peak flow estimation due to nonlinearities in the hydrologic model structure and determining how these differences behave with an increase in the upstream area through the drainage network. The framework provides an alternative evaluation of precipitation estimates, based on the diagnostics of hydrological model results.
Abstract
Rainfall maps that are derived from satellite observations provide hydrologists with an unprecedented opportunity to forecast floods globally. However, the limitations of using these precipitation estimates with respect to producing reliable flood forecasts at multiple scales are not well understood. To address the scientific and practical question of applicability of space-based rainfall products for global flood forecasting, a data evaluation framework is developed that allows tracking the rainfall effects in space and time across scales in the river network. This provides insights on the effects of rainfall product resolution and uncertainty. Obtaining such insights is not possible when the hydrologic evaluation is based on discharge observations from single gauges. The proposed framework also explores the ability of hydrologic model structure to answer questions pertaining to the utility of space-based rainfall observations for flood forecasting. To illustrate the framework, hydrometeorological data collected during the Iowa Flood Studies (IFloodS) campaign in Iowa are used to perform a hydrologic simulation using two different rainfall–runoff model structures and three rainfall products, two of which are radar based [stage IV and Iowa Flood Center (IFC)] and one satellite based [TMPA–Research Version (RV)]. This allows for exploring the differences in rainfall estimates at several spatial and temporal scales and provides improved understanding of how these differences affect flood predictions at multiple basin scales. The framework allows for exploring the differences in peak flow estimation due to nonlinearities in the hydrologic model structure and determining how these differences behave with an increase in the upstream area through the drainage network. The framework provides an alternative evaluation of precipitation estimates, based on the diagnostics of hydrological model results.
Abstract
This study assesses streamflow predictions generated by two distributed hydrologic models, the Hillslope Link Model (HLM) and the National Water Model (NWM), driven by three radar-based precipitation forcing datasets. These forcing data include the Multi-Radar Multi-Sensor (MRMS), and the Iowa Flood Center’s single-polarization-based (IFC-SP) and dual-polarization-based (IFC-DP) products. To examine forcing- and model-dependent aspects of the representation of hydrologic processes, we mixed and matched all forcing data and models, and simulated streamflow for 2016–18 based on six forcing–model combinations. The forcing product evaluation using independent ground reference data showed that the IFC-DP radar-only product’s accuracy is comparable to MRMS, which is rain gauge corrected. Streamflow evaluation at 140 U.S. Geological Survey (USGS) stations in Iowa demonstrated that the HLM tended to perform slightly better than the NWM, generating streamflow with smaller volume errors and higher predictive power as measured by Kling–Gupta efficiency (KGE). The authors also inspected the effect of estimation errors in the forcing products on streamflow generation and found that MRMS’s slight underestimation bias led to streamflow underestimation for all simulation years, particularly with the NWM. The less biased product (IFC-DP), which has higher error variability, resulted in increased runoff volumes with larger dispersion of errors compared to the ones derived from MRMS. Despite its tendency to underestimate, MRMS showed consistent performance with lower error variability as reflected by the KGE. The dispersion observed from the evaluation metrics (e.g., volume error and KGE) seems to decrease as scale becomes larger, implying that random errors in forcing are likely to average out at larger-scale basins. The evaluation of simulated peaks revealed that an accurate estimation of peak (e.g., time and magnitude) remains challenging, as demonstrated by the highly scattered distribution of peak errors for both hydrologic models.
Abstract
This study assesses streamflow predictions generated by two distributed hydrologic models, the Hillslope Link Model (HLM) and the National Water Model (NWM), driven by three radar-based precipitation forcing datasets. These forcing data include the Multi-Radar Multi-Sensor (MRMS), and the Iowa Flood Center’s single-polarization-based (IFC-SP) and dual-polarization-based (IFC-DP) products. To examine forcing- and model-dependent aspects of the representation of hydrologic processes, we mixed and matched all forcing data and models, and simulated streamflow for 2016–18 based on six forcing–model combinations. The forcing product evaluation using independent ground reference data showed that the IFC-DP radar-only product’s accuracy is comparable to MRMS, which is rain gauge corrected. Streamflow evaluation at 140 U.S. Geological Survey (USGS) stations in Iowa demonstrated that the HLM tended to perform slightly better than the NWM, generating streamflow with smaller volume errors and higher predictive power as measured by Kling–Gupta efficiency (KGE). The authors also inspected the effect of estimation errors in the forcing products on streamflow generation and found that MRMS’s slight underestimation bias led to streamflow underestimation for all simulation years, particularly with the NWM. The less biased product (IFC-DP), which has higher error variability, resulted in increased runoff volumes with larger dispersion of errors compared to the ones derived from MRMS. Despite its tendency to underestimate, MRMS showed consistent performance with lower error variability as reflected by the KGE. The dispersion observed from the evaluation metrics (e.g., volume error and KGE) seems to decrease as scale becomes larger, implying that random errors in forcing are likely to average out at larger-scale basins. The evaluation of simulated peaks revealed that an accurate estimation of peak (e.g., time and magnitude) remains challenging, as demonstrated by the highly scattered distribution of peak errors for both hydrologic models.
Abstract
This study demonstrates an approach to expand and improve the current prediction capability of the National Water Model (NWM). The primary objective is to examine the potential benefit of real-time local stage measurements in streamflow prediction, particularly for local communities that do not benefit from the improved streamflow forecasts due to the current data assimilation (DA) scheme. The proposed approach incorporates real-time local stage measurements into the NWM streamflow DA procedure by using synthetic rating curves (SRC) developed based on an established open-channel flow model. For streamflow DA and its evaluation, we used 6-yr (2016–21) data collected from 140 U.S. Geological Survey (USGS) stations, where quality-assured rating curves are consistently maintained (verification stations), and 310 stage-only stations operated by the Iowa Flood Center and the USGS in Iowa. The evaluation result from NWM’s current DA configuration based on the USGS verification stations indicated that DA improves streamflow prediction skills significantly downstream from the station locations. This improvement tends to increase as the drainage scale becomes larger. The result from the new DA configuration including all stage-only sensors showed an expanded domain of improved predictions, compared to those from the open-loop simulation. This reveals that the real-time low-cost stage sensors are beneficial for streamflow prediction, particularly at small basins, while their utility appears to be limited at large drainage areas because of the inherent limitations of lidar-based channel geometry used for the SRC development. The framework presented in this study can be readily applied to include numerous stage-only stream gauges nationwide in the NWM modeling and forecasting procedures.
Abstract
This study demonstrates an approach to expand and improve the current prediction capability of the National Water Model (NWM). The primary objective is to examine the potential benefit of real-time local stage measurements in streamflow prediction, particularly for local communities that do not benefit from the improved streamflow forecasts due to the current data assimilation (DA) scheme. The proposed approach incorporates real-time local stage measurements into the NWM streamflow DA procedure by using synthetic rating curves (SRC) developed based on an established open-channel flow model. For streamflow DA and its evaluation, we used 6-yr (2016–21) data collected from 140 U.S. Geological Survey (USGS) stations, where quality-assured rating curves are consistently maintained (verification stations), and 310 stage-only stations operated by the Iowa Flood Center and the USGS in Iowa. The evaluation result from NWM’s current DA configuration based on the USGS verification stations indicated that DA improves streamflow prediction skills significantly downstream from the station locations. This improvement tends to increase as the drainage scale becomes larger. The result from the new DA configuration including all stage-only sensors showed an expanded domain of improved predictions, compared to those from the open-loop simulation. This reveals that the real-time low-cost stage sensors are beneficial for streamflow prediction, particularly at small basins, while their utility appears to be limited at large drainage areas because of the inherent limitations of lidar-based channel geometry used for the SRC development. The framework presented in this study can be readily applied to include numerous stage-only stream gauges nationwide in the NWM modeling and forecasting procedures.
Abstract
This study compares and evaluates single-polarization (SP)- and dual-polarization (DP)-based radar-rainfall (RR) estimates using NEXRAD data acquired during Iowa Flood Studies (IFloodS), a NASA GPM ground validation field campaign carried out in May–June 2013. The objective of this study is to understand the potential benefit of the DP quantitative precipitation estimation, which selects different rain-rate estimators according to radar-identified precipitation types, and to evaluate RR estimates generated by the recent research SP and DP algorithms. The Iowa Flood Center SP (IFC-SP) and Colorado State University DP (CSU-DP) products are analyzed and assessed using two high-density, high-quality rain gauge networks as ground reference. The CSU-DP algorithm shows superior performance to the IFC-SP algorithm, especially for heavy convective rains. We verify that dynamic changes in the proportion of heavy rain during the convective period are associated with the improved performance of CSU-DP rainfall estimates. For a lighter rain case, the IFC-SP and CSU-DP products are not significantly different in statistical metrics and visual agreement with the rain gauge data. This is because both algorithms use the identical NEXRAD reflectivity–rain rate (Z–R) relation that might lead to substantial underestimation for the presented case.
Abstract
This study compares and evaluates single-polarization (SP)- and dual-polarization (DP)-based radar-rainfall (RR) estimates using NEXRAD data acquired during Iowa Flood Studies (IFloodS), a NASA GPM ground validation field campaign carried out in May–June 2013. The objective of this study is to understand the potential benefit of the DP quantitative precipitation estimation, which selects different rain-rate estimators according to radar-identified precipitation types, and to evaluate RR estimates generated by the recent research SP and DP algorithms. The Iowa Flood Center SP (IFC-SP) and Colorado State University DP (CSU-DP) products are analyzed and assessed using two high-density, high-quality rain gauge networks as ground reference. The CSU-DP algorithm shows superior performance to the IFC-SP algorithm, especially for heavy convective rains. We verify that dynamic changes in the proportion of heavy rain during the convective period are associated with the improved performance of CSU-DP rainfall estimates. For a lighter rain case, the IFC-SP and CSU-DP products are not significantly different in statistical metrics and visual agreement with the rain gauge data. This is because both algorithms use the identical NEXRAD reflectivity–rain rate (Z–R) relation that might lead to substantial underestimation for the presented case.
Abstract
The NEXRAD program has recently upgraded the WSR-88D network observational capability with dual polarization (DP). In this study, DP quantitative precipitation estimates (QPEs) provided by the current version of the NWS system are evaluated using a dense rain gauge network and two other single-polarization (SP) rainfall products. The analyses are performed for the period and spatial domain of the Iowa Flood Studies (IFloodS) campaign. It is demonstrated that the current version (2014) of QPE from DP is not superior to that from SP mainly because DP QPE equations introduce larger bias than the conventional rainfall–reflectivity [i.e., R(Z)] relationship for some hydrometeor types. Moreover, since the QPE algorithm is based on hydrometeor type, abrupt transitions in the phase of hydrometeors introduce errors in QPE with surprising variation in space that cannot be easily corrected using rain gauge data. In addition, the propagation of QPE uncertainties across multiple hydrological scales is investigated using a diagnostic framework. The proposed method allows us to quantify QPE uncertainties at hydrologically relevant scales and provides information for the evaluation of hydrological studies forced by these rainfall datasets.
Abstract
The NEXRAD program has recently upgraded the WSR-88D network observational capability with dual polarization (DP). In this study, DP quantitative precipitation estimates (QPEs) provided by the current version of the NWS system are evaluated using a dense rain gauge network and two other single-polarization (SP) rainfall products. The analyses are performed for the period and spatial domain of the Iowa Flood Studies (IFloodS) campaign. It is demonstrated that the current version (2014) of QPE from DP is not superior to that from SP mainly because DP QPE equations introduce larger bias than the conventional rainfall–reflectivity [i.e., R(Z)] relationship for some hydrometeor types. Moreover, since the QPE algorithm is based on hydrometeor type, abrupt transitions in the phase of hydrometeors introduce errors in QPE with surprising variation in space that cannot be easily corrected using rain gauge data. In addition, the propagation of QPE uncertainties across multiple hydrological scales is investigated using a diagnostic framework. The proposed method allows us to quantify QPE uncertainties at hydrologically relevant scales and provides information for the evaluation of hydrological studies forced by these rainfall datasets.
Abstract
In the spring of 2013, NASA conducted a field campaign known as Iowa Flood Studies (IFloodS) as part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS was to enhance the understanding of flood-related, space-based observations of precipitation processes in events that transpire worldwide. NASA used a number of scientific instruments such as ground-based weather radars, rain and soil moisture gauges, stream gauges, and disdrometers to monitor rainfall events in Iowa. This article presents the cyberinfrastructure tools and systems that supported the planning, reporting, and management of the field campaign and that allow these data and models to be accessed, evaluated, and shared for research. The authors describe the collaborative informatics tools, which are suitable for the network design, that were used to select the locations in which to place the instruments. How the authors used information technology tools for instrument monitoring, data acquisition, and visualizations after deploying the instruments and how they used a different set of tools to support data analysis and modeling after the campaign are also explained. All data collected during the campaign are available through the Global Hydrology Resource Center (GHRC), a NASA Distributed Active Archive Center (DAAC).
Abstract
In the spring of 2013, NASA conducted a field campaign known as Iowa Flood Studies (IFloodS) as part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS was to enhance the understanding of flood-related, space-based observations of precipitation processes in events that transpire worldwide. NASA used a number of scientific instruments such as ground-based weather radars, rain and soil moisture gauges, stream gauges, and disdrometers to monitor rainfall events in Iowa. This article presents the cyberinfrastructure tools and systems that supported the planning, reporting, and management of the field campaign and that allow these data and models to be accessed, evaluated, and shared for research. The authors describe the collaborative informatics tools, which are suitable for the network design, that were used to select the locations in which to place the instruments. How the authors used information technology tools for instrument monitoring, data acquisition, and visualizations after deploying the instruments and how they used a different set of tools to support data analysis and modeling after the campaign are also explained. All data collected during the campaign are available through the Global Hydrology Resource Center (GHRC), a NASA Distributed Active Archive Center (DAAC).