Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Boon H. Lim x
  • Refine by Access: All Content x
Clear All Modify Search
Richard M. Schulte, Christian D. Kummerow, Wesley Berg, Steven C. Reising, Shannon T. Brown, Todd C. Gaier, Boon H. Lim, and Sharmila Padmanabhan

Abstract

The rapid development of miniaturized satellite instrument technology has created a new opportunity to deploy constellations of passive microwave (PMW) radiometers to permit retrievals of the same Earth scene with very high temporal resolution to monitor cloud evolution and processes. For such a concept to be feasible, it must be shown that it is possible to distinguish actual changes in the atmospheric state from the variability induced by making observations at different Earth incidence angles (EIAs). To this end, we present a flexible and physical optimal estimation-based algorithm designed to retrieve profiles of atmospheric water vapor, cloud liquid water path, and cloud ice water path from cross-track PMW sounders. The algorithm is able to explicitly account for the dependence of forward model errors on EIA and atmospheric regime. When the algorithm is applied to data from the Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) CubeSat mission, its retrieved products are generally in agreement with those obtained from the similar but larger Microwave Humidity Sounder instrument. More importantly, when forward model brightness temperature offsets and assumed error covariances are allowed to change with EIA and sea surface temperature, view-angle-related biases are greatly reduced. This finding is confirmed in two ways: through a comparison with reanalysis data and by making use of brief periods in early 2019 during which the TEMPEST-D spacecraft was rotated such that its scan pattern was along track, allowing dozens of separate observations of any given atmospheric feature along the satellite’s ground track.

Free access
Tristan S. L’Ecuyer, Brian J. Drouin, James Anheuser, Meredith Grames, David S. Henderson, Xianglei Huang, Brian H. Kahn, Jennifer E. Kay, Boon H. Lim, Marian Mateling, Aronne Merrelli, Nathaniel B. Miller, Sharmila Padmanabhan, Colten Peterson, Nicole-Jeanne Schlegel, Mary L. White, and Yan Xie

Abstract

Earth’s climate is strongly influenced by energy deficits at the poles that emit more thermal energy than they receive from the sun. Energy exchanges between the surface and atmosphere influence the local environment while heat transport from lower latitudes drives midlatitude atmospheric and oceanic circulations. In the Arctic, in particular, local energy imbalances induce strong seasonality in surface–atmosphere heat exchanges and an acute sensitivity to forced climate variations. Despite these important local and global influences, the largest contributions to the polar atmospheric and surface energy budgets have not been fully characterized. The spectral variation of far-infrared radiation that makes up 60% of polar thermal emission has never been systematically measured impeding progress toward consensus in predicted rates of Arctic warming, sea ice decline, and ice sheet melt. Enabled by recent advances in sensor miniaturization and CubeSat technology, the Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will document, for the first time, the spectral, spatial, and temporal variations of polar far-infrared emission. Selected under NASA’s Earth Ventures Instrument (EVI) program, PREFIRE will utilize new lightweight, low-power, ambient temperature detectors capable of measuring at wavelengths up to 50 μm to quantify Earth’s far-infrared spectrum. Estimates of spectral surface emissivity, water vapor, cloud properties, and the atmospheric greenhouse effect derived from these measurements offer the potential to advance our understanding of the factors that modulate thermal fluxes in the cold, dry conditions characteristic of the polar regions.

Full access
Eric J. Jensen, Leonhard Pfister, David E. Jordan, Thaopaul V. Bui, Rei Ueyama, Hanwant B. Singh, Troy D. Thornberry, Andrew W. Rollins, Ru-Shan Gao, David W. Fahey, Karen H. Rosenlof, James W. Elkins, Glenn S. Diskin, Joshua P. DiGangi, R. Paul Lawson, Sarah Woods, Elliot L. Atlas, Maria A. Navarro Rodriguez, Steven C. Wofsy, Jasna Pittman, Charles G. Bardeen, Owen B. Toon, Bruce C. Kindel, Paul A. Newman, Matthew J. McGill, Dennis L. Hlavka, Leslie R. Lait, Mark R. Schoeberl, John W. Bergman, Henry B. Selkirk, M. Joan Alexander, Ji-Eun Kim, Boon H. Lim, Jochen Stutz, and Klaus Pfeilsticker

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

Full access