Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Bradford Johnson x
  • All content x
Clear All Modify Search
Scott Sandgathe, Jessie Carman, Bradford Johnson, and Eileen McIlvain
Open access
Sue Ellen Haupt, Steven Hanna, Mark Askelson, Marshall Shepherd, Mariana A. Fragomeni, Neil Debbage, and Bradford Johnson


The human population on Earth has increased by a factor of 4.6 in the last 100 years and has become more centered in urban environments. This expansion and migration pattern has resulted in stresses on the environment. Meteorological applications have helped to understand and mitigate those stresses. This chapter describes several applications that enable the population to interact with the environment in more sustainable ways. The first topic treated is urbanization itself and the types of stresses exerted by population growth and its attendant growth in urban landscapes—buildings and pavement—and how they modify airflow and create a local climate. We describe environmental impacts of these changes and implications for the future. The growing population uses increasing amounts of energy. Traditional sources of energy have taxed the environment, but the increase in renewable energy has used the atmosphere and hydrosphere as its fuel. Utilizing these variable renewable resources requires meteorological information to operate electric systems efficiently and economically while providing reliable power and minimizing environmental impacts. The growing human population also pollutes the environment. Thus, understanding and modeling the transport and dispersion of atmospheric contaminants are important steps toward regulating the pollution and mitigating impacts. This chapter describes how weather information can help to make surface transportation more safe and efficient. It is explained how these applications naturally require transdisciplinary collaboration to address these challenges caused by the expanding population.

Full access
David P. Rogers, Xiaohua Yang, Peter M. Norris, Douglas W. Johnson, Gill M. Martin, Carl A. Friehe, and Bradford W. Berger


The structure and evolution of the extratropical marine atmosphere boundary layer (MABL) depend largely on the variability of stratus and stratocumulus clouds. Stratus clouds are generally associated with a well-mixed MABL, whereas daytime observations of stratocumulus-topped boundary layers generally indicate that the cloud and subcloud layers are decoupled. In the Atlantic Stratocumulus Transition Experiment, aircraft measurements show a surface-based mixed layer separated from the base of the stratocumulus by a layer that is stable to dry turbulent mixing. This layer forms due to shortwave heating of the stratocumulus clouds. Cumulus clouds often develop in this transition layer and they play a fundamental role in the redistribution of heat in the decoupled stratcumulus-capped boundary layer. They are, however, very sensitive to small changes in the heat and moisture in the boundary layer and are generally transient features that depend directly on the surface sensible and latent heat fluxes. The cumulus contribute a bimodal drop-size distribution to the stratocumulus layer skewed to the smallest sizes but may contain many large drops. Clouds increase at night in response to the combined effect of convection, which can transport drops to the top of the MABL, and outgoing longwave radiation, which cools the boundary layer. The relationship between the cumulus clouds and the latent heat flux is complex. Small cumulus may enhance the flux, but as more water vapor is redistributed vertically by an increase in convective activity the latent heat flux decreases.

This study illustrates the need for boundary-layer models to properly handle the occurrence of intermittent cumulus to predict the diurnal evolution of the stratocumulus-capped MABL.

Full access
Scott Sandgathe, Bonnie R. Brown, Jessie C. Carman, Johnna M. Infanti, Bradford Johnson, David McCarren, and Eileen McIlvain
Free access