Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Bradford S. Barrett x
  • Refine by Access: All Content x
Clear All Modify Search
Bradford S. Barrett and Sultan Hameed

Abstract

Monthly precipitation in Chile (30°–55°S) was found to vary by intensity, latitude, and longitude of the South Pacific high (SPH). In austral winter, precipitation was higher when the SPH was weaker and when it was centered farther west. In austral spring, precipitation was higher when the SPH was weaker, similar to winter. However, spring precipitation was not found to be related to SPH longitude, and higher precipitation was found when the SPH was centered farther north. In austral summer, no relationship was found between precipitation and either SPH intensity or longitude, but positive correlations were found between precipitation and latitude of the SPH. In austral autumn, correlation patterns between precipitation and all three SPH metrics more closely resembled those seen in winter. The results of a multiple linear regression confirmed the importance of two SPH metrics (intensity and longitude) and the unimportance of a third SPH metric (latitude) in understanding variability in winter, summer, and autumn precipitation in central and southern Chile. In spring, regression results confirmed a relationship between precipitation and SPH intensity and latitude. Furthermore, the SPH intensity and longitude in winter combined to hindcast monthly precipitation with a better goodness of fit than five El Niño–Southern Oscillation metrics traditionally related to Chilean precipitation. Anomalies of lower-tropospheric circulation and vertical velocities were found to support the observed relationships between SPH and precipitation. Based on these results, a physical mechanism is proposed that employs the SPH as a metric to aid in understanding variability in precipitation in central and south-central Chile in all seasons.

Full access
Bradford S. Barrett and John E. Woods

To engage students in active learning, the Oceanography Department at the United States Naval Academy developed a new, not-for-course-credit training activity for its students, the Severe Weather InField Training (SWIFT). In SWIFT, 10 students and 2 faculty members traveled to the Great Plains and met with operational and research meteorologists, led daily weather discussions, made daily convective forecasts, and verified their convective forecasts by observing severe storms. Participation was solicited from sophomore- and junior-level students. SWIFT built on similar activities developed by other universities with its particular emphasis on assessing student learning and broadening awareness of both Department of Defense and civilian career opportunities in meteorology. Assessment outcomes from SWIFT indicate that students deepened their understanding of severe weather processes, were equipped to use observational and modeling data in real time, applied course content to real-world situations, became active participants in science inquiry, were introduced to a variety of meteorology career options, and increased their interest in pursuing a science-related career.

Full access
Bradford S. Barrett and Brittany N. Henley

Abstract

Climatologies have been developed to highlight variability of the frequency and intensity of hail in the United States. However, the intraseasonal variability of hail, including why one week might be active while the following inactive despite both having similar climatological probabilities, has not yet been explored. This paper presents relationships between spring-season (April–June) hail days and the leading mode of atmospheric intraseasonal variability, the Madden–Julian oscillation (MJO). It extends recent work on intraseasonal tornado variability to smaller spatial scales. In April, May, and June, statistically significant variability in hail days was found for different Real-time Multivariate MJO (RMM) phases of the MJO. For April, the strongest correlations between hail-day anomalies and anomalies of the product of convective available potential energy (CAPE) and 0–6-km vertical wind shear were found in RMM phase 5, with above-normal likelihood of a hail day found in the south-central United States. For May, the strongest correlations were found in RMM phase 3, with below-normal likelihood of a hail day located over the north-central United States. For June, the strongest correlations were found in phase 8, with above-normal likelihood of hail in west Texas and below-normal likelihood of hail over much of the middle of the United States. In all phases, 300-hPa height anomalies in the United States formed part of a global wave train similar to MJO patterns in both modeling and observational studies.

Full access
Bradford S. Barrett and Lance M. Leslie

Abstract

The leading intraseasonal mode of atmospheric and oceanic variability, the Madden–Julian oscillation (MJO), influences tropical and extratropical sea level pressure, temperature, divergent and rotational wind components, moisture, and deep convection. As a 40- to 50-day oscillation, the MJO is also known to influence tropical phenomena, including tropical cyclone (TC) activity in various TC basins. The links between the MJO and multiple measures of TC activity, including genesis, landfall, and an integrative accumulated cyclone energy (ACE) index, were quantified for multiple TC-formation basins across the Western Hemisphere, including the North Atlantic and northeast Pacific Ocean and subbasins, for the period 1978–2006. Using this relatively long (29 yr) TC dataset and employing an upper-tropospheric MJO diagnostic that is physically meaningful over the entire Western Hemisphere, this study extends existing research on the relationships between the MJO and TCs. The NOAA Climate Prediction Center’s operational MJO index, derived from 200-hPa velocity potential data, was divided into three phases. Relative frequencies of the MJO phases were compared with observed levels of TC activity using a binomial distribution hypothesis test. The MJO was found to statistically significantly modulate the frequency of TC genesis, intensification, and landfall in the nine TC basins studied. For example, when an MJO index was large and positive at 120°W, hurricanes and intense hurricanes were 4 times as likely to make landfall in the North Atlantic. This modulation of TC activity, including landfall patterns in the North Atlantic, was physically linked to the upper-atmospheric response to the eastward-propagating MJO and is evident as a dipole of TC activity between Pacific and Atlantic subbasins.

Full access
Bradford S. Barrett, RenéD. Garreaud, and Mark Falvey

Abstract

The effects of the Andes Cordillera, the major mountain range in South America, on precipitation patterns of baroclinic systems approaching from the southeast Pacific remain largely unstudied. This study focuses on a case in late May 2008 when an upper-level trough and surface cold front produced widespread precipitation in central Chile. The primary goal was to analyze the physical mechanisms responsible for the structure and evolution of the precipitation.

Weather Research and Forecasting (WRF) model simulations indicate that as an upper-level trough approached central Chile, midtropospheric flow below 700 hPa was blocked by the high topography and deflected poleward in the form of a barrier jet. This northerly jet had wind maxima in excess of 15 m s−1, was centered around 925 hPa, and extended westward 200 km from the mountains. It intersected the cold front, which approached from the south near the coast, thereby increasing convergence along the frontal surface, slowing its equatorward progress, and enhancing rainfall over central Chile. Another separate region of heavy precipitation formed over the upwind slopes of the cordillera. A trajectory analysis confirmed that the barrier jet moved low-level parcels from their origin in the moist southeast Pacific boundary layer to the coast. When model topography was reduced to twenty percent of its original height, the cold front advanced more rapidly to the northeast, generated less precipitation in central Chile between 33° and 36°S, and produced minimal orographic precipitation on the upwind Andean slopes. Based on these findings, the high topography appears responsible for not only orographic precipitation but also for substantially increasing precipitation totals over the central coast and valley.

Full access
Bradford S. Barrett, Gina R. Henderson, and Joshua S. Werling

Abstract

Intraseasonal variability in springtime Northern Hemisphere daily snow depth change (ΔSD) by phase of the MJO was explored in this study. Principal findings of the relationship between ΔSD and the MJO included the following: 1) Statistically significant regions of lagged ΔSD anomalies for multiple phases of the MJO were found in March, April, and May in both North America and Eurasia. 2) In each month, lagged ΔSD anomalies were physically supported by corresponding lagged anomalies of 500-hPa height (Z500) and surface air temperature (SAT). Spearman rank correlation coefficients indicated a moderate to strong relationship between both Z500 and ΔSD and SAT and ΔSD in both Eurasia and North America for phases 5 and 7 in March. In April, a moderately strong relationship between Z500 and ΔSD was found over Eurasia for phase 5, but the relationship between SAT and ΔSD was weak. In May, correlations between ΔSD and both Z500 and SAT over a hemisphere-wide latitude band from 60° to 75°N were close to −0.5 and −0.4, respectively. Given the strength of these statistical relationships, the following physical pathway is proposed for intraseasonal variability of spring snow depth changes: poleward-propagating Rossby waves in response to tropical MJO convection interact with Northern Hemisphere background flow, leading to anomalous troughing and ridging. These anomalous circulation centers then impact daily snow depth change via precipitation processes and anomalies in surface air temperature.

Full access
Casey R. Densmore, Elizabeth R. Sanabia, and Bradford S. Barrett

Abstract

The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.

Full access
Donald M. Lafleur, Bradford S. Barrett, and Gina R. Henderson

Abstract

One of the most commonly used metrics for both locating the Madden–Julian oscillation (MJO) geographically and defining the intensity of MJO convective activity is the real-time multivariate MJO (RMM) index. However, a climatology of the MJO, particularly with respect to the frequency of activity levels or of consecutive days at certain activity thresholds, does not yet exist. Thus, several climatological aspects of the MJO were developed in this study: 1) annual and 2) seasonal variability in MJO intensity, quantified using four defined activity categories (inactive, active, very active, and extremely active); 3) persistence in the above-defined four categories; 4) cycle length; and 5) low-frequency (decadal) variability.

On an annual basis, MJO phases 1 and 2 occurred more often, and phase 8 occurred less often, than the other phases throughout the year. Notable seasonality was also found, particularly in the frequency of extremely active MJO in March–May (8% of days) compared with June–August (only 1% of days). The MJO was persistent in time and across intensity categories, and all activity categories the following day had at least an 80% chance of maintaining their amplitudes. Implications of this climatology are discussed, including length of complete MJO cycles (the shortest of which was 17 days) and correlations between MJO amplitude and atmospheric response.

Full access
Bradford S. Barrett, Dominique Bastine Krieger, and Caroline P. Barlow

Abstract

The majority of precipitation in central Chile falls during austral winter with the passage of surface and upper-level low pressure systems and their associated surface fronts. Earlier studies have found the presence of a terrain-parallel, low-level barrier jet during cold front passage and low-level wind convergence in the region of heaviest precipitation. This study advances these findings by developing multiyear climatologies for a rainfall event in central Chile using a broad cross section of observational datasets: the Tropical Rainfall Measuring Mission (TRMM), the Atmospheric Infrared Sounder (AIRS), the National Climatic Data Center (NCDC) Global Surface Summary of the Day (GSOD), the Integrated Global Radiosonde Archive (IGRA), the Quick Scatterometer (QuikSCAT), and the NCEP–NCAR reanalysis. For this study, a precipitation event was defined as daily rainfall exceeding a certain threshold at a Santiago observing station (Pudahuel). Climatologies were developed for a five-day period surrounding the precipitation event: the three days leading up to the day of precipitation at Pudahuel, the day of the precipitation itself, and the day after. Precipitation was found to move northeastward over the southeast Pacific toward central Chile and increase in intensity upon reaching reached the coast between 33° and 40°S. At middle levels, a pronounced 500-hPa trough moved eastward and amplified during the same period, and at the surface, an area of low pressure deepened and followed the same path to the east. In the boundary layer and lower troposphere, winds at 925 and 850 hPa became exclusively north-northwesterly, suggesting the existence of a low-level jet, and surface winds backed with time and increased in speed ahead of a well-defined cold front wind shift. As these winds became more northwesterly ahead of the upper-level trough and surface low, precipitable water values increased, and a tongue of high precipitable water air intersected the coast at the same location as the region of heaviest precipitation. These climatologies, based on hundreds of cases, together provide strong confirmation that forcing associated with an eastward-progressing upper-level trough, a terrain-parallel low-level wind maximum, and an advancing surface cold front together constitute the complex, complementary mechanisms for precipitation in central Chile.

Full access
Bradford S. Barrett, Lance M. Leslie, and Brian H. Fiedler

Abstract

Since 1970, tropical cyclone (TC) track forecasts have improved steadily in the Atlantic basin. This improvement has been linked primarily to advances in numerical weather prediction (NWP) models. Concurrently, with few exceptions, the development and operational use of statistical track prediction schemes have experienced a relative decline. Statistical schemes provided the most accurate TC track forecasts until approximately the late 1980s. In this note, it is shown that increased reliance on the global NWP models does not always guarantee the best forecast. Here, Hurricane Ivan is used from the 2004 Atlantic TC season as a classical example, and reminder, of how strong climatological signals still can add substantial value to TC track forecasts, in the form of improved accuracy and increased timeliness at minimal computational cost.

In an 8-day period in early September 2004, Hurricane Ivan was repeatedly, and incorrectly, forecast by 12 operational NWP models to move with a significant northward (poleward) component. It was found that the mean 24-h trajectory forecasts of a consensus of five commonly used NWP track prediction aids had a statistically significant right-of-track bias. Furthermore, the official track forecasts, which relied heavily on erroneous numerical guidance over this period, were also found to have significant poleward trajectory errors. At the same time, a climatology-based prediction technique, drawn entirely from the historical record of motion characteristics of TCs in geographical locations similar to Ivan, correctly and consistently indicated a more westward motion component, had a small directional spread, and was supported by a large number of archived cases. This climatological signal was in conflict with the deterministic NWP model output, and it is suggested that the large errors in the official track forecast for TC Ivan could have been reduced considerably by taking into greater account such a strong climatological signal. The potential impact of such an error reduction is a saving of lives and billions of dollars in both actual damage and unnecessary evacuations costs, for just this one hurricane. We also suggest that this simple strategy of examining the strength of the climatological signal be considered for all TCs to identify cases where the NWP and official forecasts differ significantly from strong, persistent climatological signals.

Full access