Search Results

You are looking at 1 - 10 of 98 items for

  • Author or Editor: Brian A. Colle x
  • All content x
Clear All Modify Search
Brian A. Colle

Abstract

This paper examines the extratropical transition (ET) of Hurricane Floyd along the U.S. East Coast on 16–17 September 1999 using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) down to 1.33-km horizontal grid spacing. The 36-h MM5 simulation reproduced the basic features of the ET event such as the track of Floyd, the development of a deep and intense baroclinic zone along the coast and its associated precipitation evolution, and the tendency for the heavy (>30 cm) precipitation to fall in a relatively narrow (30–40 km wide) band just inland of the coast; however, the MM5 overpredicted the moderate (10–20 cm) precipitation amounts near the coast by 40%–50% as the horizontal grid spacing was reduced to 1.33 km.

The MM5 was used to diagnose the evolution of the enhanced baroclinic zone and associated heavy precipitation to the north of Floyd. A deep layer of deformation frontogenesis extended from the surface to 400 mb as a result of confluence between the southeasterlies to the northeast of Floyd at all levels and the inland northeasterlies and southwesterlies at low and midlevels, respectively. A combination of strong frontogenesis, moist symmetric instability below 800 mb, and slantwise neutrality aloft resulted in the narrow and intense band of precipitation just inland of the coast. A separate simulation without the Appalachians and coastal terrain had little effect on Floyd's wind and temperature evolution, and heavy precipitation (>30 cm) still developed just inland of the coast; therefore, terrain played a relatively minor role in the devastating flooding for this particular event over the Northeast.

Frontogenesis calculations revealed that the upper-level baroclinic zone over the northeast United States was enhanced by a horizontal gradient in midlevel latent heating between the heavy precipitation near the coast and the lighter precipitation farther inland. This was also verified by completing a simulation without latent heating, which resulted in much less baroclinicity and downstream ridging aloft. In addition, without latent heating, the central pressure of Floyd was 25 mb weaker than the full-physics (control) run, and the storm only slowly moved up the coast. Without evaporative effects from precipitation, the low-level front was 10%–20% weaker than the control, and Floyd's central pressure was about 4 mb weaker. Another simulation without surface heat fluxes resulted in a 4–5 mb weaker cyclone, and 20%–30% less precipitation shifted 100–150 km farther eastward than the control.

Full access
Brian A. Colle

Abstract

This paper presents two-dimensional (2D) idealized simulations at 1-km grid spacing using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) in order to illustrate how a series of ridges along a broad windward slope can impact the precipitation distribution and simulated microphysics. The number of windward ridges for a 2000-m mountain of 50-km half-width is varied from 0 to 16 over a 150-km distance using different stratifications, freezing levels, uniform ambient flows, and ridge amplitudes.

A few (200–400 m) windward ridges can enhance the precipitation locally over each ridge crest by a factor of 2–3. Meanwhile, a series of 8–16 ridges that are 200–400 m in height can increase the net precipitation averaged over the windward slope by 10%–35%. This average precipitation enhancement is maximized when the ridge spacing is relatively small (<20 km), since there is less time for subsidence drying within the valleys and the mountain waves become more evanescent, which favors a simple upward and downward motion couplet over each ridge. In addition, small ridge spacing is shown to have a synergistic effect on precipitation over the lower windward slope, in which an upstream ridge helps increase the precipitation over the adjacent downwind ridge. There is little net precipitation enhancement by the ridges for small moist Froude numbers (Fr < 0.8), since flow blocking limits the flow up and over each ridge. For a series of narrow ridges (∼10 km wide), the largest precipitation enhancement for a 500-mb freezing level occurs over lower windward slope of the barrier through warm-rain processes. In contrast, a 1000-mb freezing level has the largest precipitation enhancement over the middle and upper portions of a barrier for a series of narrow (∼10 km wide) ridges given the horizontal advection of snow aloft.

Full access
Brian A. Colle

Abstract

This paper utilizes the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) mesoscale model (MM5) in a two-dimensional (2D) configuration at 4-km horizontal grid spacing in order to better understand the relationship between orographic precipitation and the height and width of a barrier, as well as the ambient flow, uniform moist static stability, and freezing level. The focus is on how these parameters affect the orographic precipitation by changing the circulation and microphysical structures over the barrier.

As the low-level flow becomes blocked for moist nondimensional mountain heights greater than 3.0, there is a rapid upstream shift in the precipitation maximum and a reduction in precipitation over the upper windward slope. For the terrain geometries used in this study (500 to 3500 m high and 25- to 50-km half-width), the maximum precipitation is a strong function of barrier slope for relatively weak upstream flow (U = 10 m s−1). For moderate wind speeds (U = 20 m s−1) and a freezing level of 750 mb, melting effects lower the freezing level more along the windward slope as the mountain half-width and height increases for barrier slopes greater than 0.03. As a result, a low (1000 m) and narrow (25-km half-width) barrier has a greater surface precipitation maximum than a high (2000 m) and wide (50-km half-width) mountain of equivalent slope since the smaller barrier has more efficient warm rain processes occurring along the windward slope. For wind speeds greater than 20 m s−1, a wider and higher barrier has a greater precipitation maximum since it has a more extensive orographic cloud, while a narrower barrier has more precipitation advecting into the lee.

The precipitation distribution is highly dependent on how the terrain-induced gravity wave modifies the circulation aloft. Even in the unblocked flow regime, the precipitation builds upstream of the crest for winds greater than 20 m s−1, since strong flow favors a large vertical wavelength of the mountain gravity wave, and therefore a deep layer of upward motion over the lower windward slope. Both a narrower barrier and weaker stability favor less tilt to the mountain wave, resulting in a more collapsed circulation above the crest and more precipitation spillover. Reverse shear above the crest favors low-level wave amplification and a windward shift in the precipitation, while forward shear favors a weaker mountain wave over the crest and more precipitation advection into the lee. Finally, a freezing level raised from 750 to 500 mb collapses the precipitation distribution over the windward slope with less leeside spillover, therefore the windward precipitation efficiency remains high (>90%) at strong (>20 m s−1) wind speeds.

Full access
Zhenhai Zhang and Brian A. Colle

Abstract

This study investigates the impact of dynamical downscaling on historical and future projections of winter extratropical cyclones over eastern North America and the western Atlantic Ocean. Six-hourly output from two global circulation models (GCMs), CCSM4 and GFDL-ESM2M, from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to create the initial and boundary conditions for 20 historical (1986–2005) and 20 future (2080–99) winter simulations using the Weather Research and Forecasting (WRF) Model. Two sets of WRF grid spacing (1.0° and 0.2°) are examined to determine the impact of model resolution. Although the cyclone frequency in the WRF runs is largely determined by the GCM predictions, the higher-resolution WRF reduces the underprediction in cyclone intensity. There is an increase in late-twenty-first-century cyclone activity over the east coast of North America in CCSM4 and its WRF, whereas there is little change in GFDL-ESM2M and WRF given that there is a larger decrease in the temperature gradient in this region. There is a future increase in relatively deep cyclones over the East Coast in the high-resolution WRF forced by CCSM4. These storms are weaker than the historical cases early in their life cycle, but then because of latent heating they rapidly develop and become stronger than the historical events. This increase does not occur in the low-resolution WRF or the high-resolution WRF forced by GFDL since the latent heat increase is relatively small. This implies that the diabatic processes during cyclogenesis may become more important in a warmer climate, and these processes may be too weak in existing coarse-resolution GCMs.

Full access
Harrison Li and Brian A. Colle

Abstract

Long-term changes in warm season (April–September) convective storm frequency over the northeastern United States (NEUS) and the environmental conditions favoring such storms are explored from 1979 to 2010. Linear discriminant analysis (LDA) was used to create thresholds for predicting annual warm season convective storm frequency over various small regions of the NEUS by relating the convective precipitation fields from the North American Regional Reanalysis (NARR) and the Climate Forecast System Reanalysis (CFSR) along with reflectivity data from the National Operational Weather Radar (NOWrad) archive at 2-km grid spacing from 1996 to 2006 to convective parameters in the reanalyses. On average, convective frequency is greatest across inland areas of the NEUS, particularly southern Pennsylvania, with a sharp decrease along the immediate coast. Across western Pennsylvania convective storm frequency has significantly (p < 0.01) decreased from 1979 to 2010, while closer to the coast convective frequency has increased slightly. There has also been a corresponding trend in warm season convective precipitation amounts, with decreasing amounts over inland Pennsylvania and increasing amounts near the coast. This general pattern of inland decreases and coastal increases is largely related to trends in low-level instability, which are attributable mainly to changes in low-level moisture. Analyzing convective parameters over small regions is an important consideration for future climate studies of convection, since using a single LDA threshold over a region encompassing a large portion of the NEUS failed to capture significant spatial differences in convective frequency and was substantially less accurate than using separate thresholds for smaller regions of the NEUS.

Full access
Ryan Connelly and Brian A. Colle

Abstract

This paper investigates the ability of the Weather Research and Forecasting (WRF) Model in simulating multiple small-scale precipitation bands (multibands) within the extratropical cyclone comma head using four winter storm cases from 2014 to 2017. Using the model output, some physical processes are explored to investigate band prediction. A 40-member WRF ensemble was constructed down to 2-km grid spacing over the Northeast United States using different physics, stochastic physics perturbations, different initial/boundary conditions from the first five perturbed members of the Global Forecast System (GFS) Ensemble Reforecast (GEFSR), and a stochastic kinetic energy backscatter scheme (SKEBS). It was found that 2-km grid spacing is adequate to resolve most snowbands. A feature-based verification is applied to hourly WRF reflectivity fields from each ensemble member and the WSR-88D radar reflectivity at 2-km height above sea level. The Method for Object-Based Diagnostic Evaluation (MODE) tool is used for identifying multibands, which are defined as two or more bands that are 5–20 km in width and that also exhibit a >2:1 aspect ratio. The WRF underpredicts the number of multibands and has a slight eastward position bias. There is no significant difference in frontogenetical forcing, vertical stability, moisture, and vertical shear between the banded versus nonbanded members. Underpredicted band members tend to have slightly stronger frontogenesis than observed, which may be consolidating the bands, but overall there is no clear linkage in ambient condition errors and band errors, thus leaving the source for the band underprediction motivation for future work.

Full access
Harrison Li and Brian A. Colle

Abstract

Future changes in the frequency of environmental conditions conducive for convective storm days (“CE days”) are determined for the northeastern United States (NEUS) during the warm seasons (April–September) of the twenty-first century. Statistical relationships between historical runs of seven models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and radar-classified convective storm days are developed using linear discriminant analysis (LDA), and these relationships are then applied to analyze changes in the convective environment under the high-emissions representative concentration pathway 8.5 (RCP8.5) scenario over the period 2006–99. The 1996–2007 warm seasons are used to train the LDA thresholds using convective precipitation from two reanalysis datasets and radar data, and the 1979–95 and 2008–10 warm seasons are used to verify these thresholds. For the CMIP5 historical period (1979–2005), the frequency of warm season CE days averaged across the CMIP5 models is slightly greater than that derived using reanalysis data, although both methods indicate a slight increasing trend through the historical period. Between 2006 and 2099, warm season CE day frequency is predicted to increase substantially at an average rate of 4–5 days decade−1 (50%–80% increase over the entire period). These changes are mostly attributed to a predicted 30%–40% increase in midlevel precipitable water between the historical period and the last few decades of the twenty-first century. Consistent with previous studies, there is decreasing deep-layer vertical wind shear as a result of a weakening horizontal temperature gradient, but this is outweighed by increases in instability led by the moisture increases.

Full access
Yanluan Lin and Brian A. Colle

Abstract

This paper highlights the observed and simulated microphysical evolution of a moderate orographic rainfall event over the central Oregon Cascade Range during 4–5 December 2001 of the Second Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2). Airborne in situ measurements illustrate the spatial variations in ice crystal distributions and amounts over the windward Cascades and within some convective cells. The in situ microphysical observations, ground radars, and surface observations are compared with four bulk microphysical parameterizations (BMPs) within the Weather Research and Forecasting (WRF) model. Those WRF BMP schemes that overpredict surface precipitation along the Cascade windward slopes are shown to have too rapid graupel (rimed snow) fallout. Most BMP schemes overpredict snow in the maximum snow depositional growth region aloft, which results in excessive precipitation spillover into the immediate lee of the Cascades. Meanwhile, there is underprediction to the east of the Cascades in all BMP schemes. Those BMPs that produce more graupel than snow generate nearly twice as much precipitation over the Oregon Coast Range as the other BMPs given the cellular convection in this region. Sensitivity runs suggest that the graupel accretion of snow generates too much graupel within select WRF BMPs. Those BMPs that generate more graupel than snow have shorter cloud residence times and larger removal of available water vapor. Snow depositional growth may be overestimated by 2 times within the BMPs when a capacitance for spherical particles is used rather than for snow aggregates. Snow mass–diameter relationships also have a large impact on the snow and cloud liquid water generation. The positive definite advection scheme for moisture and hydrometeors in the WRF reduces the surface precipitation by 20%–30% over the Coast Range and improves water conservation, especially where there are convective cells.

Full access
Zhenhai Zhang and Brian A. Colle

Abstract

This study investigates the future change in precipitation associated with extratropical cyclones over eastern North America and the western Atlantic during the cool season (November–March) through the twenty-first century. A cyclone-relative approach is applied to 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) in order to isolate precipitation changes for different cyclone intensities and storm life cycle, as well as determine the relevant physical processes associated with these changes. The historical analysis suggests that models with better performance in predicting extratropical cyclones tend to have smaller precipitation errors, and the ensemble mean has a smaller mean absolute error than the individual models. By the late-twenty-first century, the precipitation amount associated with cyclones increases by 5%–25% over the U.S. East Coast, with about 90% of the increase from the relatively strong (<990 hPa) and moderate (990–1005 hPa) cyclones. Meanwhile, the precipitation rate increases by 15%–25% over the U.S. East Coast for the strong cyclone centers, which is larger than the moderate and weak cyclones. The relatively strong cyclones just inland of the U.S. East Coast have the largest increase (~30%) in precipitation rate, since these centers over land have the largest increase in low-level temperature (and moisture), a decrease (5%–13%) in the static stability, and an increase (~5%) in upward motion during the late-twenty-first century. This east coast region also has an increase in cyclone intensity in the future even though there is a decrease in low-level baroclinicity, which suggests that the latent heat release from heavier precipitation contributes to this storm deepening.

Full access
Michael Layer and Brian A. Colle

Abstract

Damaging wind events not associated with severe convective storms or tropical cyclones can cause significant problems with transportation, infrastructure, and public safety over the northeastern United States. These nonconvective wind events (NCWEs) are difficult to forecast in New York City and surrounding regions as revealed by the relatively poor probability of detection (POD) and false alarm ratio (FAR) in recent years. This paper investigates the climatology of NCWEs between 15 September and 15 May over 13 cool seasons from 2000/01 through 2012/13. The events are separated into three distinct synoptic patterns: pre-cold-frontal (PRF), post-cold-frontal (POF), and nor’easter/coastal storm (NEC) cases. Relationships between observed winds and some atmospheric parameters such as 900-hPa geopotential height gradient, 3-h mean sea level pressure (MSLP) tendency, low-level wind profile, and stability are also presented. Overall, PRF and NEC have the largest FAR, because several events with a low-level jet at 1–2 km above the surface have relatively strong low-level stability that limits vertical momentum mixing. The POD is lowest for the POF events, which have a strong diurnal influence given the relatively deep mixed layer. Verification is also conducted over the cool seasons from 2009/10 to 2013/14 using the Short Range Ensemble Forecast (SREF) system from the National Centers for Environmental Prediction (NCEP). Both deterministic and probabilistic verification metrics are used to evaluate the performance of the ensemble during NCWEs. Although the SREF has more forecast skill than any of the deterministic SREF control members, it is rather poorly calibrated and exhibits a significant overconfidence given its positive wind speed bias in the lower troposphere.

Full access