Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Brian J. Drouin x
  • Refine by Access: All Content x
Clear All Modify Search
Brian H. Kahn, Brian J. Drouin, and Tristan S. L’Ecuyer

Abstract

The Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will, for the first time, systematically document the far-infrared (15–54 µm) spectral region from space. The environmental sampling characteristics of the PREFIRE CubeSats, defined in terms of surface temperature (T sfc) and column water vapor (CWV) are evaluated for a range of possible orbit scenarios for both clear-sky and all-sky conditions over a variety of surface types (land, ocean, sea ice, snow, glacier ice) at both poles. Using NASA Aqua’s Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) retrievals to define the climatological ranges of T sfc and CWV, the fraction of environmental regimes observed by distinct PREFIRE configurations are evaluated. The sampling rates within any single year for two-orbit CubeSat launches spanning both polar regions are ~75% for clear-sky and ~85% for all-sky compared to the AIRS/AMSU climatology. Decreasing mission duration from 12 to 3 months decreases sampling much more (10%–20%) than decreasing the swath width from 15 to 8 footprints (6%–9%). For a single CubeSat launch, a 98° orbital inclination provides slightly better sampling than either 93° or 103°. For a two-orbit CubeSat launch, a combination of 93° + 98° is somewhat preferable to 103° + 98°. Finally, a 50% data loss rate simulated by dropping out every other orbit leads to only a modest 7%–8% reduction in sampling from full data coverage. This statistical analysis demonstrates that low-cost platforms could offer similar coverage as present-day flagship missions for sampling wide-ranging T sfc and CWV states over polar regions.

Restricted access
Tristan S. L’Ecuyer, Brian J. Drouin, James Anheuser, Meredith Grames, David S. Henderson, Xianglei Huang, Brian H. Kahn, Jennifer E. Kay, Boon H. Lim, Marian Mateling, Aronne Merrelli, Nathaniel B. Miller, Sharmila Padmanabhan, Colten Peterson, Nicole-Jeanne Schlegel, Mary L. White, and Yan Xie

Abstract

Earth’s climate is strongly influenced by energy deficits at the poles that emit more thermal energy than they receive from the sun. Energy exchanges between the surface and atmosphere influence the local environment while heat transport from lower latitudes drives midlatitude atmospheric and oceanic circulations. In the Arctic, in particular, local energy imbalances induce strong seasonality in surface–atmosphere heat exchanges and an acute sensitivity to forced climate variations. Despite these important local and global influences, the largest contributions to the polar atmospheric and surface energy budgets have not been fully characterized. The spectral variation of far-infrared radiation that makes up 60% of polar thermal emission has never been systematically measured impeding progress toward consensus in predicted rates of Arctic warming, sea ice decline, and ice sheet melt. Enabled by recent advances in sensor miniaturization and CubeSat technology, the Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will document, for the first time, the spectral, spatial, and temporal variations of polar far-infrared emission. Selected under NASA’s Earth Ventures Instrument (EVI) program, PREFIRE will utilize new lightweight, low-power, ambient temperature detectors capable of measuring at wavelengths up to 50 μm to quantify Earth’s far-infrared spectrum. Estimates of spectral surface emissivity, water vapor, cloud properties, and the atmospheric greenhouse effect derived from these measurements offer the potential to advance our understanding of the factors that modulate thermal fluxes in the cold, dry conditions characteristic of the polar regions.

Full access