Search Results
You are looking at 1 - 10 of 21 items for
- Author or Editor: Brian K. Haus x
- Refine by Access: All Content x
Abstract
This paper is dedicated to wave-induced turbulence unrelated to wave breaking. The existence of such turbulence has been foreshadowed in a number of experimental, theoretical, and numerical studies. The current study presents direct measurements of this turbulence. The laboratory experiment was conducted by means of particle image velocimetry, which allowed estimates of wavenumber velocity spectra beneath monochromatic nonbreaking unforced waves. Observed spectra intermittently exhibited the Kolmogorov interval associated with the presence of isotropic turbulence. The magnitudes of the energy dissipation rates due to this turbulence in the particular case of 1.5-Hz deep-water waves were quantified as a function of the surface wave amplitude. The presence of such turbulence, previously not accounted for, can affect the physics of the wave energy dissipation, the subsurface boundary layer, and the ocean mixing in a significant way.
Abstract
This paper is dedicated to wave-induced turbulence unrelated to wave breaking. The existence of such turbulence has been foreshadowed in a number of experimental, theoretical, and numerical studies. The current study presents direct measurements of this turbulence. The laboratory experiment was conducted by means of particle image velocimetry, which allowed estimates of wavenumber velocity spectra beneath monochromatic nonbreaking unforced waves. Observed spectra intermittently exhibited the Kolmogorov interval associated with the presence of isotropic turbulence. The magnitudes of the energy dissipation rates due to this turbulence in the particular case of 1.5-Hz deep-water waves were quantified as a function of the surface wave amplitude. The presence of such turbulence, previously not accounted for, can affect the physics of the wave energy dissipation, the subsurface boundary layer, and the ocean mixing in a significant way.
Abstract
Short-range infrared (IR) observations of ocean surface reveal complicated spatially varying and evolving structures. Here we present an approach to use spatially correlated time series IR images, over a time scale of one-tenth of a second, of the water surface to derive underlying surface velocity and turbulence fields. The approach here was tested in a laboratory using grid-generated turbulence and a heater assembly. The technique was compared with in situ measurements to validate our IR-derived remote measurements. The IR-measured turbulent kinetic energy (TKE) dissipation rates were consistent with in situ–measured dissipation using a vertical microstructure profiler (VMP). We used measurements of the gradient of the velocity field to calculate TKE dissipation rates at the surface. Based on theoretical and experimental considerations, we have proposed two models of IR TKE dissipation rate retrievals and designed an approach for oceanic field IR applications.
Abstract
Short-range infrared (IR) observations of ocean surface reveal complicated spatially varying and evolving structures. Here we present an approach to use spatially correlated time series IR images, over a time scale of one-tenth of a second, of the water surface to derive underlying surface velocity and turbulence fields. The approach here was tested in a laboratory using grid-generated turbulence and a heater assembly. The technique was compared with in situ measurements to validate our IR-derived remote measurements. The IR-measured turbulent kinetic energy (TKE) dissipation rates were consistent with in situ–measured dissipation using a vertical microstructure profiler (VMP). We used measurements of the gradient of the velocity field to calculate TKE dissipation rates at the surface. Based on theoretical and experimental considerations, we have proposed two models of IR TKE dissipation rate retrievals and designed an approach for oceanic field IR applications.
Abstract
The capability of phased-array HF radar systems to sample the spatial distribution of wave energy is investigated in different storm scenarios and coastal configurations. First, a formulation introduced by D. E. Barrick to extract significant wave height Hs from backscatter Doppler spectra was calibrated and subsequently tested (to assess bias and uncertainty) with data from seven different buoy/gauge stations collected during three different field experiments. Afterward, Hs observations were obtained for selected sampling locations within the radar effective domain (in all experiments), and a filtering technique based on wavelet transform characterization and decomposition was applied. The accuracy of the filtered radar-derived observations was assessed by comparing these estimates to results from independently calibrated wave propagation models. It was found that the HF radar accurately measured the energy field induced by different storm events. The filtering technique minimized the contribution of unrealistic features introduced by the presence of defective sampling, which is intrinsic to radar remote sensing at this frequency, and it proved to be central for the use of the HF radar as a tool to identify wave energy trends and potential zones of wave energy concentration in coastal areas. These findings show that the sampling capabilities of radar systems may be greatly enhanced because reliable wave energy estimates can be obtained in addition to conventional surface current measurements. This is particularly important in locations such as harbor entrances where in situ measuring devices cannot be deployed.
Abstract
The capability of phased-array HF radar systems to sample the spatial distribution of wave energy is investigated in different storm scenarios and coastal configurations. First, a formulation introduced by D. E. Barrick to extract significant wave height Hs from backscatter Doppler spectra was calibrated and subsequently tested (to assess bias and uncertainty) with data from seven different buoy/gauge stations collected during three different field experiments. Afterward, Hs observations were obtained for selected sampling locations within the radar effective domain (in all experiments), and a filtering technique based on wavelet transform characterization and decomposition was applied. The accuracy of the filtered radar-derived observations was assessed by comparing these estimates to results from independently calibrated wave propagation models. It was found that the HF radar accurately measured the energy field induced by different storm events. The filtering technique minimized the contribution of unrealistic features introduced by the presence of defective sampling, which is intrinsic to radar remote sensing at this frequency, and it proved to be central for the use of the HF radar as a tool to identify wave energy trends and potential zones of wave energy concentration in coastal areas. These findings show that the sampling capabilities of radar systems may be greatly enhanced because reliable wave energy estimates can be obtained in addition to conventional surface current measurements. This is particularly important in locations such as harbor entrances where in situ measuring devices cannot be deployed.
Abstract
Controlled experiments were conducted in the Air–Sea Interaction Saltwater Tank (ASIST) at the University of Miami to investigate air–sea moist enthalpy transfer rates under various wind speeds (range of 0.6–39 m s−1 scaled to equivalent 10-m neutral winds) and water–air temperature differences (range of 1.3°–9.2°C). An indirect calorimetric (heat content budget) measurement technique yielded accurate determinations of moist enthalpy flux over the full range of wind speeds. These winds included conditions with significant spray generation, the concentrations of which were of the same order as field observations. The moist enthalpy exchange coefficient so measured included a contribution from cooled reentrant spray and therefore serves as an upper limit for the interfacial transfer of enthalpy. An unknown quantity of spray was also observed to exit the tank without evaporating. By invoking an air volume enthalpy budget it was determined that the potential contribution of this exiting spray over an unbounded water volume was up to 28%. These two limits bound the total enthalpy transfer coefficient including spray-mediated transfers.
Abstract
Controlled experiments were conducted in the Air–Sea Interaction Saltwater Tank (ASIST) at the University of Miami to investigate air–sea moist enthalpy transfer rates under various wind speeds (range of 0.6–39 m s−1 scaled to equivalent 10-m neutral winds) and water–air temperature differences (range of 1.3°–9.2°C). An indirect calorimetric (heat content budget) measurement technique yielded accurate determinations of moist enthalpy flux over the full range of wind speeds. These winds included conditions with significant spray generation, the concentrations of which were of the same order as field observations. The moist enthalpy exchange coefficient so measured included a contribution from cooled reentrant spray and therefore serves as an upper limit for the interfacial transfer of enthalpy. An unknown quantity of spray was also observed to exit the tank without evaporating. By invoking an air volume enthalpy budget it was determined that the potential contribution of this exiting spray over an unbounded water volume was up to 28%. These two limits bound the total enthalpy transfer coefficient including spray-mediated transfers.
Abstract
This study analyzes high-resolution ship data collected in the Gulf of Mexico during the Lagrangian Submesoscale Experiment (LASER) from January to February 2016 to produce the first reported measurements of dissipative heating in the explicitly nonhurricane atmospheric surface layer. Although typically computed from theory as a function of wind speed cubed, the dissipative heating directly estimated via the turbulent kinetic energy (TKE) dissipation rate is also presented. The dissipative heating magnitude agreed with a previous study that estimated the dissipative heating in the hurricane boundary layer using in situ aircraft data. Our observations that the 10-m neutral drag coefficient parameterized using TKE dissipation rate approaches zero slope as wind increases suggests that TKE dissipation and dissipative heating are constrained to a physical limit. Both surface-layer stability and sea state were observed to be important conditions influencing dissipative heating, with the stability determined via TKE budget terms and the sea state determined via wave steepness and age using direct shipboard measurements. Momentum and enthalpy fluxes used in the TKE budget are determined using the eddy-correlation method. It is found that the TKE dissipation rate and the dissipative heating are largest in a nonneutral atmospheric surface layer with a sea surface comprising steep wind sea and slow swell waves at a given surface wind speed, whereas the ratio of dissipative heating to enthalpy fluxes is largest in near-neutral stability where the turbulent vertical velocities are near zero.
Abstract
This study analyzes high-resolution ship data collected in the Gulf of Mexico during the Lagrangian Submesoscale Experiment (LASER) from January to February 2016 to produce the first reported measurements of dissipative heating in the explicitly nonhurricane atmospheric surface layer. Although typically computed from theory as a function of wind speed cubed, the dissipative heating directly estimated via the turbulent kinetic energy (TKE) dissipation rate is also presented. The dissipative heating magnitude agreed with a previous study that estimated the dissipative heating in the hurricane boundary layer using in situ aircraft data. Our observations that the 10-m neutral drag coefficient parameterized using TKE dissipation rate approaches zero slope as wind increases suggests that TKE dissipation and dissipative heating are constrained to a physical limit. Both surface-layer stability and sea state were observed to be important conditions influencing dissipative heating, with the stability determined via TKE budget terms and the sea state determined via wave steepness and age using direct shipboard measurements. Momentum and enthalpy fluxes used in the TKE budget are determined using the eddy-correlation method. It is found that the TKE dissipation rate and the dissipative heating are largest in a nonneutral atmospheric surface layer with a sea surface comprising steep wind sea and slow swell waves at a given surface wind speed, whereas the ratio of dissipative heating to enthalpy fluxes is largest in near-neutral stability where the turbulent vertical velocities are near zero.
Abstract
Bubbles directly link sea surface structure to the dissipation rate of turbulence in the ocean surface layer through wave breaking, and they are an important vehicle for air–sea transfer of heat and gases and important for understanding both hurricanes and global climate. Adequate parameterization of bubble dynamics, especially in high winds, requires simultaneous measurements of surface waves and breaking-induced turbulence; collection of such data would be hazardous in the field, and they are largely absent from laboratory studies to date. We therefore present data from a series of laboratory wind-wave tank experiments designed to observe bubble size distributions in natural seawater beneath hurricane conditions and connect them to surface wave statistics and subsurface turbulence. A shadowgraph imager was used to observe bubbles in three different water temperature conditions. We used these controlled conditions to examine the role of stability, surface tension, and water temperature on bubble distributions. Turbulent kinetic energy dissipation rates were determined from subsurface ADCP data using a robust inertial-subrange identification algorithm and related to wind input via wave-dependent scaling. Bubble distributions shift from narrow to broadbanded and toward smaller radius with increased wind input and wave steepness. TKE dissipation rate and shear were shown to increase with wave steepness; this behavior is associated with a larger number of small bubbles in the distributions, suggesting shear is dominant in forcing bubbles in hurricane wind-wave conditions. These results have important implications for bubble-facilitated air–sea exchanges, near-surface ocean mixing, and the distribution of turbulence beneath the air–sea interface in hurricanes.
Significance Statement
Bubbles are a vehicle for the flux of heat, momentum, and gases between the atmosphere and ocean. These fluxes contribute to the energy budgets of hurricanes, climate, and upper-ocean biology. Few to no simultaneous measurements of surface waves, bubbles, and turbulence have been made in hurricane conditions. To improve numerical model representation of bubbles, we performed laboratory experiments to parameterize bubble size distributions using physical variables including wind and waves. Bubble distributions were found to become broadbanded and shift toward smaller radius with increased wind stress and wave steepness. Turbulence dissipation rate and shear were shown to increase with wave steepness. Our results give the first physically based bubble distribution parameterization from naturally breaking waves in hurricane-force conditions.
Abstract
Bubbles directly link sea surface structure to the dissipation rate of turbulence in the ocean surface layer through wave breaking, and they are an important vehicle for air–sea transfer of heat and gases and important for understanding both hurricanes and global climate. Adequate parameterization of bubble dynamics, especially in high winds, requires simultaneous measurements of surface waves and breaking-induced turbulence; collection of such data would be hazardous in the field, and they are largely absent from laboratory studies to date. We therefore present data from a series of laboratory wind-wave tank experiments designed to observe bubble size distributions in natural seawater beneath hurricane conditions and connect them to surface wave statistics and subsurface turbulence. A shadowgraph imager was used to observe bubbles in three different water temperature conditions. We used these controlled conditions to examine the role of stability, surface tension, and water temperature on bubble distributions. Turbulent kinetic energy dissipation rates were determined from subsurface ADCP data using a robust inertial-subrange identification algorithm and related to wind input via wave-dependent scaling. Bubble distributions shift from narrow to broadbanded and toward smaller radius with increased wind input and wave steepness. TKE dissipation rate and shear were shown to increase with wave steepness; this behavior is associated with a larger number of small bubbles in the distributions, suggesting shear is dominant in forcing bubbles in hurricane wind-wave conditions. These results have important implications for bubble-facilitated air–sea exchanges, near-surface ocean mixing, and the distribution of turbulence beneath the air–sea interface in hurricanes.
Significance Statement
Bubbles are a vehicle for the flux of heat, momentum, and gases between the atmosphere and ocean. These fluxes contribute to the energy budgets of hurricanes, climate, and upper-ocean biology. Few to no simultaneous measurements of surface waves, bubbles, and turbulence have been made in hurricane conditions. To improve numerical model representation of bubbles, we performed laboratory experiments to parameterize bubble size distributions using physical variables including wind and waves. Bubble distributions were found to become broadbanded and shift toward smaller radius with increased wind stress and wave steepness. Turbulence dissipation rate and shear were shown to increase with wave steepness. Our results give the first physically based bubble distribution parameterization from naturally breaking waves in hurricane-force conditions.
Abstract
A quantitative description of wind-wave momentum transfer in high wind conditions is necessary for accurate wave models, storm and hurricane forecasting, and models that require atmosphere–ocean coupling such as circulation and mixed layer models. In this work, a static pressure probe mounted on a vertical wave follower to investigate relatively strong winds (U 10 up to 26.9 m s−1 and U 10/Cp up to 16.6) above waves in laboratory conditions. The main goal of the paper is to quantify the effect of wave shape and airflow sheltering on the momentum transfer and wave growth. Primary results are formulated in terms of wind forcing and wave steepness ak, where a is wave amplitude and k is wave number. It is suggested that, within the studied range (ak up to 0.19), the airflow is best described by the nonseparated sheltering theory. Notably, a small amount of spray and breaking waves was present at the highest wind speeds; however, their effect on the momentum flux was not found to be significant within studied conditions.
Abstract
A quantitative description of wind-wave momentum transfer in high wind conditions is necessary for accurate wave models, storm and hurricane forecasting, and models that require atmosphere–ocean coupling such as circulation and mixed layer models. In this work, a static pressure probe mounted on a vertical wave follower to investigate relatively strong winds (U 10 up to 26.9 m s−1 and U 10/Cp up to 16.6) above waves in laboratory conditions. The main goal of the paper is to quantify the effect of wave shape and airflow sheltering on the momentum transfer and wave growth. Primary results are formulated in terms of wind forcing and wave steepness ak, where a is wave amplitude and k is wave number. It is suggested that, within the studied range (ak up to 0.19), the airflow is best described by the nonseparated sheltering theory. Notably, a small amount of spray and breaking waves was present at the highest wind speeds; however, their effect on the momentum flux was not found to be significant within studied conditions.
Abstract
A dual-station high-frequency Wellen Radar (WERA), transmitting at 16.045 MHz, was deployed along the west Florida shelf in phased array mode during the summer of 2003. A 33-day, continuous time series of radial and vector surface current fields was acquired starting on 23 August ending 25 September 2003. Over a 30-min sample interval, WERA mapped coastal ocean currents over an ≈40 km × 80 km footprint with a 1.2-km horizontal resolution. A total of 1628 snapshots of the vector surface currents was acquired, with only 70 samples (4.3%) missing from the vector time series. Comparisons to subsurface measurements from two moored acoustic Doppler current profilers revealed RMS differences of 1 to 5 cm s−1 for both radial and Cartesian current components. Regression analyses indicated slopes close to unity with small biases between surface and subsurface measurements at 4-m depth in the east–west (u) and north–south (υ) components, respectively. Vector correlation coefficients were 0.9 with complex phases of −3° and 5° at EC4 (20-m isobath) and NA2 (25-m isobath) moorings, respectively.
Complex surface circulation patterns were observed that included tidal and wind-driven currents over the west Florida shelf. Tidal current amplitudes were 4 to 5 cm s−1 for the diurnal and semidiurnal constituents. Vertical structure of these tidal currents indicated that the semidiurnal components were predominantly barotropic whereas diurnal tidal currents had more of a baroclinic component. Tidal currents were removed from the observed current time series and were compared to the 10-m adjusted winds at a surface mooring. Based on these time series comparisons, regression slopes were 0.02 to 0.03 in the east–west and north–south directions, respectively. During Tropical Storm Henri’s passage on 5 September 2003, cyclonically rotating surface winds forced surface velocities of more than 35 cm s−1 as Henri made landfall north of Tampa Bay, Florida. These results suggest that the WERA measured the surface velocity well under weak to tropical storm wind conditions.
Abstract
A dual-station high-frequency Wellen Radar (WERA), transmitting at 16.045 MHz, was deployed along the west Florida shelf in phased array mode during the summer of 2003. A 33-day, continuous time series of radial and vector surface current fields was acquired starting on 23 August ending 25 September 2003. Over a 30-min sample interval, WERA mapped coastal ocean currents over an ≈40 km × 80 km footprint with a 1.2-km horizontal resolution. A total of 1628 snapshots of the vector surface currents was acquired, with only 70 samples (4.3%) missing from the vector time series. Comparisons to subsurface measurements from two moored acoustic Doppler current profilers revealed RMS differences of 1 to 5 cm s−1 for both radial and Cartesian current components. Regression analyses indicated slopes close to unity with small biases between surface and subsurface measurements at 4-m depth in the east–west (u) and north–south (υ) components, respectively. Vector correlation coefficients were 0.9 with complex phases of −3° and 5° at EC4 (20-m isobath) and NA2 (25-m isobath) moorings, respectively.
Complex surface circulation patterns were observed that included tidal and wind-driven currents over the west Florida shelf. Tidal current amplitudes were 4 to 5 cm s−1 for the diurnal and semidiurnal constituents. Vertical structure of these tidal currents indicated that the semidiurnal components were predominantly barotropic whereas diurnal tidal currents had more of a baroclinic component. Tidal currents were removed from the observed current time series and were compared to the 10-m adjusted winds at a surface mooring. Based on these time series comparisons, regression slopes were 0.02 to 0.03 in the east–west and north–south directions, respectively. During Tropical Storm Henri’s passage on 5 September 2003, cyclonically rotating surface winds forced surface velocities of more than 35 cm s−1 as Henri made landfall north of Tampa Bay, Florida. These results suggest that the WERA measured the surface velocity well under weak to tropical storm wind conditions.
Abstract
A magnetic signature is created by secondary magnetic field fluctuations caused by the phenomenon of seawater moving in Earth’s magnetic field. A laboratory experiment was conducted at the Surge Structure Atmosphere Interaction (SUSTAIN) facility to measure the magnetic signature of surface waves using a differential method: a pair of magnetometers, separated horizontally by one-half wavelength, were placed at several locations on the outer tank walls. This technique significantly reduced the extraneous magnetic distortions that were detected simultaneously by both sensors and additionally doubled the magnetic signal of surface waves. Accelerometer measurements and local gradients were used to identify magnetic noise produced from tank vibrations. Wave parameters of 4-m-long waves with a 0.56-Hz frequency and a 0.1-m amplitude were used in this experiment. Freshwater and saltwater experiments were completed to determine the magnetic difference generated by the difference in conductivity. Tests with an empty tank were conducted to identify the noise of the facility. When the magnetic signal was put through spectral analysis, it showed the primary peak at the wave frequency (0.56 Hz) and less pronounced higher-frequency harmonics, which are caused by the nonlinearity of shallow water surface waves. The magnetic noise induced by the wavemaker and related vibrations peaked around 0.3 Hz, which was removed using filtering techniques. These results indicate that the magnetic signature produced by surface waves was an order of magnitude larger than in traditional model predictions. The discrepancy may be due to the magnetic permeability difference between water and air that is not considered in the traditional model.
Abstract
A magnetic signature is created by secondary magnetic field fluctuations caused by the phenomenon of seawater moving in Earth’s magnetic field. A laboratory experiment was conducted at the Surge Structure Atmosphere Interaction (SUSTAIN) facility to measure the magnetic signature of surface waves using a differential method: a pair of magnetometers, separated horizontally by one-half wavelength, were placed at several locations on the outer tank walls. This technique significantly reduced the extraneous magnetic distortions that were detected simultaneously by both sensors and additionally doubled the magnetic signal of surface waves. Accelerometer measurements and local gradients were used to identify magnetic noise produced from tank vibrations. Wave parameters of 4-m-long waves with a 0.56-Hz frequency and a 0.1-m amplitude were used in this experiment. Freshwater and saltwater experiments were completed to determine the magnetic difference generated by the difference in conductivity. Tests with an empty tank were conducted to identify the noise of the facility. When the magnetic signal was put through spectral analysis, it showed the primary peak at the wave frequency (0.56 Hz) and less pronounced higher-frequency harmonics, which are caused by the nonlinearity of shallow water surface waves. The magnetic noise induced by the wavemaker and related vibrations peaked around 0.3 Hz, which was removed using filtering techniques. These results indicate that the magnetic signature produced by surface waves was an order of magnitude larger than in traditional model predictions. The discrepancy may be due to the magnetic permeability difference between water and air that is not considered in the traditional model.
Abstract
Ocean surface current measurements from high-frequency (HF) radar are assessed by comparing these data to near-surface current observations from 1 to 30 October 1994 at two moored subsurface current meter arrays (20 and 25 m) instrumented with vector-measuring current meters (VMCMs) and Seacat sensors during the Duck94 experiment. A dual-station ocean surface current radar (OSCR) mapped the current fields at 20-min intervals at a horizontal resolution of 1.2 km over a 25 km × 44 km domain using the HF (25.4 MHz) mode and directly overlooked these moorings. In response to wind, tidal, and buoyancy forcing over 29 days, surface current observations were acquired 95% of the time in the core of the OSCR domain, decreasing to levels of about 50% in the offshore direction.
Regression analyses between surface and subsurface measurements at 4 and 6 m indicated biases of 2–6 cm s−1, slopes of O(1), and rms differences of 7–9 cm s−1. Episodic freshwater intrusions of about 30 practical salinity units (psu) were associated with a coastally trapped buoyant jet superposed on tidal currents. This tidal forcing consisted of diurnal (K1) and semidiurnal (M2) tidal constituents where the surface and subsurface (4 m) speeds were 3 and 8 cm s−1, and 2 and 7 cm s−1, respectively. During the passage of a nor’easter, near-surface winds reached 14 m s−1, which induced vertical mixing that caused weak stratification in the water column. An abrupt wind change following this event excited near-inertial (≈20.3 h) currents with amplitudes of about 20 cm s−1 rotating clockwise with time and depth. Bulk current shears over 4- and 6-m layers were O(10−2 s−1) at the 25-m mooring where the correlation coefficients exceeded 0.8. Similar results were found at the 20-m mooring until the nor’easter when correlation coefficients decreased to 0.5 due to the superposition of storm-induced flows and the buoyant jet, causing the surface current to exceed 90 cm s−1 over the inner to midshelf.
Abstract
Ocean surface current measurements from high-frequency (HF) radar are assessed by comparing these data to near-surface current observations from 1 to 30 October 1994 at two moored subsurface current meter arrays (20 and 25 m) instrumented with vector-measuring current meters (VMCMs) and Seacat sensors during the Duck94 experiment. A dual-station ocean surface current radar (OSCR) mapped the current fields at 20-min intervals at a horizontal resolution of 1.2 km over a 25 km × 44 km domain using the HF (25.4 MHz) mode and directly overlooked these moorings. In response to wind, tidal, and buoyancy forcing over 29 days, surface current observations were acquired 95% of the time in the core of the OSCR domain, decreasing to levels of about 50% in the offshore direction.
Regression analyses between surface and subsurface measurements at 4 and 6 m indicated biases of 2–6 cm s−1, slopes of O(1), and rms differences of 7–9 cm s−1. Episodic freshwater intrusions of about 30 practical salinity units (psu) were associated with a coastally trapped buoyant jet superposed on tidal currents. This tidal forcing consisted of diurnal (K1) and semidiurnal (M2) tidal constituents where the surface and subsurface (4 m) speeds were 3 and 8 cm s−1, and 2 and 7 cm s−1, respectively. During the passage of a nor’easter, near-surface winds reached 14 m s−1, which induced vertical mixing that caused weak stratification in the water column. An abrupt wind change following this event excited near-inertial (≈20.3 h) currents with amplitudes of about 20 cm s−1 rotating clockwise with time and depth. Bulk current shears over 4- and 6-m layers were O(10−2 s−1) at the 25-m mooring where the correlation coefficients exceeded 0.8. Similar results were found at the 20-m mooring until the nor’easter when correlation coefficients decreased to 0.5 due to the superposition of storm-induced flows and the buoyant jet, causing the surface current to exceed 90 cm s−1 over the inner to midshelf.