Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Brian Laughman x
  • Refine by Access: All Content x
Clear All Modify Search
Roger Grimshaw
,
Dave Broutman
,
Brian Laughman
, and
Stephen D. Eckermann

Abstract

Mesospheric bores have been observed and measured in the mesopause region near 100-km altitude, where they propagate horizontally along a duct of relatively strong density stratification. Here, a weakly nonlinear theory is developed for the description of these mesospheric bores. It extends previous theories by allowing internal gravity wave radiation from the duct into the surrounding stratified regions, which are formally assumed to be weakly stratified. The radiation away from the duct is expected to be important for bore energetics. The theory is compared with a numerical simulation of the full Navier–Stokes equations in the Boussinesq approximation. Two initial conditions are considered. The first is a solitary wave solution that would propagate without change of form if the region outside the duct were unstratified. The second is a sinusoid that evolves into an undular bore. The main conclusion is that, while solitary waves and undular bores decay by radiation from the duct, they can survive as significant structures over sufficiently long periods (~100 min) to be observable.

Full access
Thomas S. Lund
,
David C. Fritts
,
Kam Wan
,
Brian Laughman
, and
Han-Li Liu

Abstract

This paper addresses the compressible nonlinear dynamics accompanying increasing mountain wave (MW) forcing over the southern Andes and propagation into the mesosphere and lower thermosphere (MLT) under winter conditions. A stretched grid provides very high resolution of the MW dynamics in a large computational domain. A slow increase of cross-mountain winds enables MWs to initially break in the mesosphere and extend to lower and higher altitudes thereafter. MW structure and breaking is strongly modulated by static mean and semidiurnal tide fields exhibiting a critical level at ~114 km for zonal MW propagation. Varying vertical group velocities for different zonal wavelengths λ x yield initial breaking in the lee of the major Andes peaks for λ x ~ 50 km, and extending significantly upstream for larger λ x approaching the critical level at later times. The localized extent of the Andes terrain in latitude leads to “ship wave” responses above the individual peaks at earlier times, and a much larger ship-wave response at 100 km and above as the larger-scale MWs achieve large amplitudes. Other responses above regions of MW breaking include large-scale secondary gravity waves and acoustic waves that achieve very large amplitudes extending well into the thermosphere. MW breaking also causes momentum deposition that yields local decelerations initially, which merge and extend horizontally thereafter and persist throughout the event. Companion papers examine the associated momentum fluxes, mean-flow evolution, gravity wave–tidal interactions, and the MW instability dynamics and sources of secondary gravity waves and acoustic waves.

Open access
David C. Fritts
,
Ronald B. Smith
,
Michael J. Taylor
,
James D. Doyle
,
Stephen D. Eckermann
,
Andreas Dörnbrack
,
Markus Rapp
,
Bifford P. Williams
,
P.-Dominique Pautet
,
Katrina Bossert
,
Neal R. Criddle
,
Carolyn A. Reynolds
,
P. Alex Reinecke
,
Michael Uddstrom
,
Michael J. Revell
,
Richard Turner
,
Bernd Kaifler
,
Johannes S. Wagner
,
Tyler Mixa
,
Christopher G. Kruse
,
Alison D. Nugent
,
Campbell D. Watson
,
Sonja Gisinger
,
Steven M. Smith
,
Ruth S. Lieberman
,
Brian Laughman
,
James J. Moore
,
William O. Brown
,
Julie A. Haggerty
,
Alison Rockwell
,
Gregory J. Stossmeister
,
Steven F. Williams
,
Gonzalo Hernandez
,
Damian J. Murphy
,
Andrew R. Klekociuk
,
Iain M. Reid
, and
Jun Ma

Abstract

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.

Full access