Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Bruce L. Wyman x
  • Refine by Access: All Content x
Clear All Modify Search
Jeffrey L. Anderson, Bruce Wyman, Shaoqing Zhang, and Timothy Hoar

Abstract

An ensemble filter data assimilation system is tested in a perfect model setting using a low resolution Held–Suarez configuration of an atmospheric GCM. The assimilation system is able to reconstruct details of the model’s state at all levels when only observations of surface pressure (PS) are available. The impacts of varying the spatial density and temporal frequency of PS observations are examined. The error of the ensemble mean assimilation prior estimate appears to saturate at some point as the number of PS observations available once every 24 h is increased. However, increasing the frequency with which PS observations are available from a fixed network of 1800 randomly located stations results in an apparently unbounded decrease in the assimilation’s prior error for both PS and all other model state variables. The error reduces smoothly as a function of observation frequency except for a band with observation periods around 4 h. Assimilated states are found to display enhanced amplitude high-frequency gravity wave oscillations when observations are taken once every few hours, and this adversely impacts the assimilation quality. Assimilations of only surface temperature and only surface wind components are also examined.

The results indicate that, in a perfect model context, ensemble filters are able to extract surprising amounts of information from observations of only a small portion of a model’s spatial domain. This suggests that most of the remaining challenges for ensemble filter assimilation are confined to problems such as model error, observation representativeness error, and unknown instrument error characteristics that are outside the scope of perfect model experiments. While it is dangerous to extrapolate from these simple experiments to operational atmospheric assimilation, the results also suggest that exploring the frequency with which observations are used for assimilation may lead to significant enhancements to assimilated state estimates.

Full access
Stephen M. Griffies, Michael Winton, Leo J. Donner, Larry W. Horowitz, Stephanie M. Downes, Riccardo Farneti, Anand Gnanadesikan, William J. Hurlin, Hyun-Chul Lee, Zhi Liang, Jaime B. Palter, Bonita L. Samuels, Andrew T. Wittenberg, Bruce L. Wyman, Jianjun Yin, and Niki Zadeh

Abstract

This paper documents time mean simulation characteristics from the ocean and sea ice components in a new coupled climate model developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The GFDL Climate Model version 3 (CM3) is formulated with effectively the same ocean and sea ice components as the earlier CM2.1 yet with extensive developments made to the atmosphere and land model components. Both CM2.1 and CM3 show stable mean climate indices, such as large-scale circulation and sea surface temperatures (SSTs). There are notable improvements in the CM3 climate simulation relative to CM2.1, including a modified SST bias pattern and reduced biases in the Arctic sea ice cover. The authors anticipate SST differences between CM2.1 and CM3 in lower latitudes through analysis of the atmospheric fluxes at the ocean surface in corresponding Atmospheric Model Intercomparison Project (AMIP) simulations. In contrast, SST changes in the high latitudes are dominated by ocean and sea ice effects absent in AMIP simulations. The ocean interior simulation in CM3 is generally warmer than in CM2.1, which adversely impacts the interior biases.

Full access
Eric D. Maloney, Suzana J. Camargo, Edmund Chang, Brian Colle, Rong Fu, Kerrie L. Geil, Qi Hu, Xianan Jiang, Nathaniel Johnson, Kristopher B. Karnauskas, James Kinter, Benjamin Kirtman, Sanjiv Kumar, Baird Langenbrunner, Kelly Lombardo, Lindsey N. Long, Annarita Mariotti, Joyce E. Meyerson, Kingtse C. Mo, J. David Neelin, Zaitao Pan, Richard Seager, Yolande Serra, Anji Seth, Justin Sheffield, Julienne Stroeve, Jeanne Thibeault, Shang-Ping Xie, Chunzai Wang, Bruce Wyman, and Ming Zhao

Abstract

In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity.

Full access
Thomas L. Delworth, Anthony J. Broccoli, Anthony Rosati, Ronald J. Stouffer, V. Balaji, John A. Beesley, William F. Cooke, Keith W. Dixon, John Dunne, K. A. Dunne, Jeffrey W. Durachta, Kirsten L. Findell, Paul Ginoux, Anand Gnanadesikan, C. T. Gordon, Stephen M. Griffies, Rich Gudgel, Matthew J. Harrison, Isaac M. Held, Richard S. Hemler, Larry W. Horowitz, Stephen A. Klein, Thomas R. Knutson, Paul J. Kushner, Amy R. Langenhorst, Hyun-Chul Lee, Shian-Jiann Lin, Jian Lu, Sergey L. Malyshev, P. C. D. Milly, V. Ramaswamy, Joellen Russell, M. Daniel Schwarzkopf, Elena Shevliakova, Joseph J. Sirutis, Michael J. Spelman, William F. Stern, Michael Winton, Andrew T. Wittenberg, Bruce Wyman, Fanrong Zeng, and Rong Zhang

Abstract

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

Full access
Leo J. Donner, Bruce L. Wyman, Richard S. Hemler, Larry W. Horowitz, Yi Ming, Ming Zhao, Jean-Christophe Golaz, Paul Ginoux, S.-J. Lin, M. Daniel Schwarzkopf, John Austin, Ghassan Alaka, William F. Cooke, Thomas L. Delworth, Stuart M. Freidenreich, C. T. Gordon, Stephen M. Griffies, Isaac M. Held, William J. Hurlin, Stephen A. Klein, Thomas R. Knutson, Amy R. Langenhorst, Hyun-Chul Lee, Yanluan Lin, Brian I. Magi, Sergey L. Malyshev, P. C. D. Milly, Vaishali Naik, Mary J. Nath, Robert Pincus, Jeffrey J. Ploshay, V. Ramaswamy, Charles J. Seman, Elena Shevliakova, Joseph J. Sirutis, William F. Stern, Ronald J. Stouffer, R. John Wilson, Michael Winton, Andrew T. Wittenberg, and Fanrong Zeng

Abstract

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.

Full access