Search Results
You are looking at 1 - 10 of 39 items for
- Author or Editor: Bruce T. Anderson x
- Refine by Access: All Content x
Abstract
Previous research has shown that seasonal-mean boreal winter variations in the subtropical/extratropical sea level pressure and wind stress fields over the central North Pacific are significantly related to the state of the El Niño–Southern Oscillation (ENSO) 12–15 months later. Results presented in this note indicate that boreal winter ENSO events are also preceded by increased intraseasonal variance in the antecedent boreal winter atmospheric circulation patterns over the extratropical central North Pacific as well. Low (high) surface pressure anomalies associated with intraseasonal variability in this region are related to intraseasonal wind stress anomalies that represent a weakening (strengthening) of the trade winds over both the north and south subtropical/tropical Pacific. There is also a concurrent increase (decrease) in the central and eastern subtropical North Pacific sea surface temperatures that projects onto the seasonal-mean SST anomalies that precede mature ENSO events by 9–12 months. Overall these results suggest that similar to seasonal-mean subtropical surface pressure and wind stress fields, enhanced transient variability in the midlatitudes can subsequently induce changes in the atmospheric and oceanic structure of the tropical Pacific that may serve as a precursor to ENSO variability.
Abstract
Previous research has shown that seasonal-mean boreal winter variations in the subtropical/extratropical sea level pressure and wind stress fields over the central North Pacific are significantly related to the state of the El Niño–Southern Oscillation (ENSO) 12–15 months later. Results presented in this note indicate that boreal winter ENSO events are also preceded by increased intraseasonal variance in the antecedent boreal winter atmospheric circulation patterns over the extratropical central North Pacific as well. Low (high) surface pressure anomalies associated with intraseasonal variability in this region are related to intraseasonal wind stress anomalies that represent a weakening (strengthening) of the trade winds over both the north and south subtropical/tropical Pacific. There is also a concurrent increase (decrease) in the central and eastern subtropical North Pacific sea surface temperatures that projects onto the seasonal-mean SST anomalies that precede mature ENSO events by 9–12 months. Overall these results suggest that similar to seasonal-mean subtropical surface pressure and wind stress fields, enhanced transient variability in the midlatitudes can subsequently induce changes in the atmospheric and oceanic structure of the tropical Pacific that may serve as a precursor to ENSO variability.
Abstract
By examining the linearly coupled atmospheric and oceanic signals related to interannual variability in sea surface temperatures and upper-air wind fields, a hemispheric-scale ocean–atmosphere teleconnection mode is isolated that is significantly correlated with equatorial Pacific SSTs 12 months later. The interannual component of this teleconnection mode is related to a basin-scale dipole in the upper-air wind fields stretching across the extratropical Pacific, with additional anomalies extending from the eastern tropical Pacific over North America and into the Atlantic basin. In addition, it is related to variability in the SST field with warm anomalies found over the tropical/subtropical western Pacific as well as the equatorial eastern Pacific; also, there are related cold anomalies over the extratropical central North Pacific that extend down into the central subtropical/tropical Pacific. Diagnostic studies investigating the ocean–atmosphere structure for this mode of variability indicate that the large-scale variations in the upper-air circulation patterns are associated with anomalous equatorward propagation of transient and stationary wave activity over the North Pacific. In addition, they are characterized by vertical circulation patterns over both the subtropical and extratropical Pacific, which are collocated with variations in surface pressure and wind stress fields over the central subtropical and tropical North Pacific. Previous research has shown that modifications of these two fields are significantly related to the evolution of equatorial Pacific SSTs and may provide the dynamic mechanism whereby the ocean–atmosphere teleconnection mode described here influences the development of the ENSO system. This influence appears to be related to a modification of the basin-scale heat content over the central and eastern tropical Pacific; however, significant discussion is provided concerning alternative hypotheses.
Abstract
By examining the linearly coupled atmospheric and oceanic signals related to interannual variability in sea surface temperatures and upper-air wind fields, a hemispheric-scale ocean–atmosphere teleconnection mode is isolated that is significantly correlated with equatorial Pacific SSTs 12 months later. The interannual component of this teleconnection mode is related to a basin-scale dipole in the upper-air wind fields stretching across the extratropical Pacific, with additional anomalies extending from the eastern tropical Pacific over North America and into the Atlantic basin. In addition, it is related to variability in the SST field with warm anomalies found over the tropical/subtropical western Pacific as well as the equatorial eastern Pacific; also, there are related cold anomalies over the extratropical central North Pacific that extend down into the central subtropical/tropical Pacific. Diagnostic studies investigating the ocean–atmosphere structure for this mode of variability indicate that the large-scale variations in the upper-air circulation patterns are associated with anomalous equatorward propagation of transient and stationary wave activity over the North Pacific. In addition, they are characterized by vertical circulation patterns over both the subtropical and extratropical Pacific, which are collocated with variations in surface pressure and wind stress fields over the central subtropical and tropical North Pacific. Previous research has shown that modifications of these two fields are significantly related to the evolution of equatorial Pacific SSTs and may provide the dynamic mechanism whereby the ocean–atmosphere teleconnection mode described here influences the development of the ENSO system. This influence appears to be related to a modification of the basin-scale heat content over the central and eastern tropical Pacific; however, significant discussion is provided concerning alternative hypotheses.
Abstract
Using results taken from a finescale (25 km) regional modeling simulation for the summer of 1999, intraseasonal variations in the climatological summertime hydrologic cycle over the southwestern United States are described for two previously identified spatiotemporal precipitation patterns. Over the western portion of the Rocky Mountain plateau, centered on eastern Utah and western Colorado, columnar moisture divergence associated with precipitation is balanced by a combination of seasonal-mean convective moisture convergence and anomalous upper-air (>4 km) large-scale moisture convergence. The actual precipitating events themselves are predicated upon the anomalous upper-level advection of water vapor into the precipitating region; absent this large-scale advection at upper levels, vertical diffusion of moisture into the atmosphere balances large-scale divergence at midlevels, with little precipitation occurring. The anomalous large-scale advection during precipitating events is due primarily to anomalous large-scale vertical fluxes of moisture, with only a slight contribution from large-scale horizontal moisture fluxes. For precipitation located over the eastern portion of the plateau and the elevated orography of eastern New Mexico and southern Colorado, correlated moisture budget terms indicate that precipitation is again related to mean convective moisture convergence and anomalous midtroposphere large-scale moisture convergence. As with the western-plateau precipitation regime, this anomalous convergence is strongly correlated with an anomalous vertical advection of moisture; however, for the eastern-plateau regime, this vertical term is the sole source of large-scale moisture convergence contributing to rainfall in the region. In both cases, the vertical moisture convergence may be associated with previously identified intraseasonal modifications of the upper-level monsoon ridge centered over the Sierra Madre, which results in significant large-scale vertical velocities over the precipitating regions.
Abstract
Using results taken from a finescale (25 km) regional modeling simulation for the summer of 1999, intraseasonal variations in the climatological summertime hydrologic cycle over the southwestern United States are described for two previously identified spatiotemporal precipitation patterns. Over the western portion of the Rocky Mountain plateau, centered on eastern Utah and western Colorado, columnar moisture divergence associated with precipitation is balanced by a combination of seasonal-mean convective moisture convergence and anomalous upper-air (>4 km) large-scale moisture convergence. The actual precipitating events themselves are predicated upon the anomalous upper-level advection of water vapor into the precipitating region; absent this large-scale advection at upper levels, vertical diffusion of moisture into the atmosphere balances large-scale divergence at midlevels, with little precipitation occurring. The anomalous large-scale advection during precipitating events is due primarily to anomalous large-scale vertical fluxes of moisture, with only a slight contribution from large-scale horizontal moisture fluxes. For precipitation located over the eastern portion of the plateau and the elevated orography of eastern New Mexico and southern Colorado, correlated moisture budget terms indicate that precipitation is again related to mean convective moisture convergence and anomalous midtroposphere large-scale moisture convergence. As with the western-plateau precipitation regime, this anomalous convergence is strongly correlated with an anomalous vertical advection of moisture; however, for the eastern-plateau regime, this vertical term is the sole source of large-scale moisture convergence contributing to rainfall in the region. In both cases, the vertical moisture convergence may be associated with previously identified intraseasonal modifications of the upper-level monsoon ridge centered over the Sierra Madre, which results in significant large-scale vertical velocities over the precipitating regions.
Abstract
Previous research has shown that seasonal mean variations in both the subtropical/extratropical sea level pressures over the central North Pacific and the subsurface heat content anomalies in the western equatorial Pacific are significantly related to the state of the El Niño–Southern Oscillation (ENSO) 12–18 months later. Here we find that positive (negative) subsurface temperature anomalies in the western equatorial Pacific during boreal summer/fall, followed by negative (positive) anomalies in the sea level pressure fields over the subtropical central North Pacific during boreal winter, tend to result in positive (negative) mature ENSO events 12–15 months later (i.e., during the following boreal winter). When the intervening sea level pressure anomalies are of the same sign as the preceding heat-content anomalies, the correlation between the heat-content anomalies and the following boreal-winter ENSO state disappears. There is still some relation between the boreal-winter sea level pressure anomalies and the ENSO state the following year when the two precursor patterns are of the same sign; however, the correlation is smaller and the ENSO events tend to be weaker. Additional analysis indicates that the two precursor fields are related to one another; however, the sea level pressure variations contain more unique information about, and provide better predictability of, the state of the following ENSO system than do the heat content anomalies.
Abstract
Previous research has shown that seasonal mean variations in both the subtropical/extratropical sea level pressures over the central North Pacific and the subsurface heat content anomalies in the western equatorial Pacific are significantly related to the state of the El Niño–Southern Oscillation (ENSO) 12–18 months later. Here we find that positive (negative) subsurface temperature anomalies in the western equatorial Pacific during boreal summer/fall, followed by negative (positive) anomalies in the sea level pressure fields over the subtropical central North Pacific during boreal winter, tend to result in positive (negative) mature ENSO events 12–15 months later (i.e., during the following boreal winter). When the intervening sea level pressure anomalies are of the same sign as the preceding heat-content anomalies, the correlation between the heat-content anomalies and the following boreal-winter ENSO state disappears. There is still some relation between the boreal-winter sea level pressure anomalies and the ENSO state the following year when the two precursor patterns are of the same sign; however, the correlation is smaller and the ENSO events tend to be weaker. Additional analysis indicates that the two precursor fields are related to one another; however, the sea level pressure variations contain more unique information about, and provide better predictability of, the state of the following ENSO system than do the heat content anomalies.
Abstract
This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier.
The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.
Abstract
This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier.
The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.
Abstract
Using results taken from a finescale (25 km), regional modeling simulation for the summer of 1999, along with contemporaneous daily surface observations, synoptic variations in summertime precipitation over the southwestern United States are described and analyzed. Two separate techniques for characterizing and evaluating large-scale summertime precipitation patterns within the observed and simulated systems are presented; in addition, these evaluation/characterization techniques are used to analyze the hydrologic forcings associated with observed and simulated modes of rainfall variability. Overall, two robust spatiotemporal precipitation patterns are identified involving 1) precipitation over the western portion of the Rocky Mountain plateau centered on eastern Arizona and southern Utah, and 2) precipitation located over the eastern portion of the plateau and the elevated orography of eastern New Mexico and southern Colorado. Time series associated with these two precipitation regimes are correlated with low-level and midlevel circulation patterns in order to investigate the related large-scale environmental conditions. It is found that for both regimes intraseasonal precipitation is related to the intrusion of midtroposphere, midlatitude low-pressure anomalies over the southwestern United States, resulting in synoptic-scale shifts in the position of the climatological midtroposphere monsoon ridge. The interaction between the resultant midtroposphere pressure fields and the quasi-stationary monsoon surface pressures found over the Rocky Mountain plateau during the summertime produce large-scale vertical velocities consistent with the observed and simulated rainfall patterns associated with each regime.
Abstract
Using results taken from a finescale (25 km), regional modeling simulation for the summer of 1999, along with contemporaneous daily surface observations, synoptic variations in summertime precipitation over the southwestern United States are described and analyzed. Two separate techniques for characterizing and evaluating large-scale summertime precipitation patterns within the observed and simulated systems are presented; in addition, these evaluation/characterization techniques are used to analyze the hydrologic forcings associated with observed and simulated modes of rainfall variability. Overall, two robust spatiotemporal precipitation patterns are identified involving 1) precipitation over the western portion of the Rocky Mountain plateau centered on eastern Arizona and southern Utah, and 2) precipitation located over the eastern portion of the plateau and the elevated orography of eastern New Mexico and southern Colorado. Time series associated with these two precipitation regimes are correlated with low-level and midlevel circulation patterns in order to investigate the related large-scale environmental conditions. It is found that for both regimes intraseasonal precipitation is related to the intrusion of midtroposphere, midlatitude low-pressure anomalies over the southwestern United States, resulting in synoptic-scale shifts in the position of the climatological midtroposphere monsoon ridge. The interaction between the resultant midtroposphere pressure fields and the quasi-stationary monsoon surface pressures found over the Rocky Mountain plateau during the summertime produce large-scale vertical velocities consistent with the observed and simulated rainfall patterns associated with each regime.
Abstract
Diurnal variations in the climatological large-scale summertime hydrologic cycle over the southwestern United States are examined using surface and upper-air observations along with regional model output. Rainfall rates are greatest during the daytime, but the hydrologic balance that supports this rainfall changes as the day progresses. During the late morning and early afternoon, the area-averaged rainfall is balanced predominantly by evapotranspiration augmented by low-level moisture convergence; moisture from these two sources is redistributed via eddy diffusion, resulting in an overall moistening of the atmosphere and a divergence of moisture aloft. During the late afternoon, vertical redistribution via eddy diffusion weakens considerably, although precipitation continues at approximately the same rate because of drying aloft, which also supports continued large-scale divergence of moisture at these levels. This large-scale divergence aloft persists at all times of day, suggesting that for the domain as a whole, precipitation is dependent upon low-level moisture sources. At finer scales, these balances are modified principally by the presence of moisture convergence/divergence centered on the elevated regions of the domain, suggesting that local balances may be more complex than the area-average balances described here.
Abstract
Diurnal variations in the climatological large-scale summertime hydrologic cycle over the southwestern United States are examined using surface and upper-air observations along with regional model output. Rainfall rates are greatest during the daytime, but the hydrologic balance that supports this rainfall changes as the day progresses. During the late morning and early afternoon, the area-averaged rainfall is balanced predominantly by evapotranspiration augmented by low-level moisture convergence; moisture from these two sources is redistributed via eddy diffusion, resulting in an overall moistening of the atmosphere and a divergence of moisture aloft. During the late afternoon, vertical redistribution via eddy diffusion weakens considerably, although precipitation continues at approximately the same rate because of drying aloft, which also supports continued large-scale divergence of moisture at these levels. This large-scale divergence aloft persists at all times of day, suggesting that for the domain as a whole, precipitation is dependent upon low-level moisture sources. At finer scales, these balances are modified principally by the presence of moisture convergence/divergence centered on the elevated regions of the domain, suggesting that local balances may be more complex than the area-average balances described here.
Abstract
Projections of amplified climate change in the Arctic are attributed to positive feedbacks associated with the retreat of sea ice and changes in the lapse rate of the polar atmosphere. Here, a set of idealized aquaplanet experiments are performed to understand the coupling between high-latitude feedbacks, polar amplification, and the large-scale atmospheric circulation. Results are compared to CMIP5. Simulated climate responses are characterized by a wide range of polar amplification (from none to nearly 15-K warming, relative to the low latitudes) under CO2 quadrupling. Notably, the high-latitude lapse rate feedback varies in sign among the experiments. The aquaplanet simulation with the greatest polar amplification, representing a transition from perennial to ice-free conditions, exhibits a marked decrease in dry static energy flux by transient eddies. Partly compensating for the reduced poleward energy flux is a contraction of the Ferrel cell and an increase in latent energy flux. Enhanced eddy energy flux is consistent with the upper-tropospheric warming that occurs in all experiments and provides a remote influence on the polar lapse rate feedback. The main conclusions are that (i) given a large, localized change in meridional surface temperature gradient, the midlatitude circulation exhibits strong compensation between changes in dry and latent energy fluxes, and (ii) atmospheric eddies mediate the nonlinear interaction between surface albedo and lapse rate feedbacks, rendering the high-latitude lapse rate feedback less positive than it would be otherwise. Consequently, the variability of the circulation response, and particularly the partitioning of energy fluxes, offers insights into understanding the magnitude of polar amplification.
Abstract
Projections of amplified climate change in the Arctic are attributed to positive feedbacks associated with the retreat of sea ice and changes in the lapse rate of the polar atmosphere. Here, a set of idealized aquaplanet experiments are performed to understand the coupling between high-latitude feedbacks, polar amplification, and the large-scale atmospheric circulation. Results are compared to CMIP5. Simulated climate responses are characterized by a wide range of polar amplification (from none to nearly 15-K warming, relative to the low latitudes) under CO2 quadrupling. Notably, the high-latitude lapse rate feedback varies in sign among the experiments. The aquaplanet simulation with the greatest polar amplification, representing a transition from perennial to ice-free conditions, exhibits a marked decrease in dry static energy flux by transient eddies. Partly compensating for the reduced poleward energy flux is a contraction of the Ferrel cell and an increase in latent energy flux. Enhanced eddy energy flux is consistent with the upper-tropospheric warming that occurs in all experiments and provides a remote influence on the polar lapse rate feedback. The main conclusions are that (i) given a large, localized change in meridional surface temperature gradient, the midlatitude circulation exhibits strong compensation between changes in dry and latent energy fluxes, and (ii) atmospheric eddies mediate the nonlinear interaction between surface albedo and lapse rate feedbacks, rendering the high-latitude lapse rate feedback less positive than it would be otherwise. Consequently, the variability of the circulation response, and particularly the partitioning of energy fluxes, offers insights into understanding the magnitude of polar amplification.
Abstract
Projections of human-induced climate change impacts arising from the emission of atmospheric chemical constituents such as carbon dioxide typically utilize multiple integrations (or ensembles) of numerous numerical climate change models to arrive at multimodel ensembles from which mean and median values and probabilities can be inferred about the response of various components of the observed climate system. Some responses are considered reliable in as much as the simulated responses show consistency within ensembles and across models. Other responses—particularly at regional levels and for certain parameters such as precipitation—show little intermodel consistency even in the sign of the projected climate changes. The authors’ results show that in these regions the consistency in the sign of projected precipitation variations is greater for intramodel runs (e.g., runs from the same model) than intermodel runs (e.g., runs from different models), indicating that knowledge of the internal “dynamics” of the climate system can provide additional skill in making projections of climate change. Given the consistency provided by the governing dynamics of the model, the authors test whether persistence from an individual model trajectory serves as a good predictor for its own behavior by the end of the twenty-first century. Results indicate that, in certain regions where intermodel consistency is low, the short-term trends of individual model trajectories do provide additional skill in making projections of long-term climate change. The climate forcing for which this forecast skill becomes relatively large (e.g., correct in 75% of the individual model runs) is equivalent to the anthropogenic climate forcing imposed over the past century, suggesting that observed changes in precipitation in these regions can provide guidance about the direction of future precipitation changes over the course of the next century.
Abstract
Projections of human-induced climate change impacts arising from the emission of atmospheric chemical constituents such as carbon dioxide typically utilize multiple integrations (or ensembles) of numerous numerical climate change models to arrive at multimodel ensembles from which mean and median values and probabilities can be inferred about the response of various components of the observed climate system. Some responses are considered reliable in as much as the simulated responses show consistency within ensembles and across models. Other responses—particularly at regional levels and for certain parameters such as precipitation—show little intermodel consistency even in the sign of the projected climate changes. The authors’ results show that in these regions the consistency in the sign of projected precipitation variations is greater for intramodel runs (e.g., runs from the same model) than intermodel runs (e.g., runs from different models), indicating that knowledge of the internal “dynamics” of the climate system can provide additional skill in making projections of climate change. Given the consistency provided by the governing dynamics of the model, the authors test whether persistence from an individual model trajectory serves as a good predictor for its own behavior by the end of the twenty-first century. Results indicate that, in certain regions where intermodel consistency is low, the short-term trends of individual model trajectories do provide additional skill in making projections of long-term climate change. The climate forcing for which this forecast skill becomes relatively large (e.g., correct in 75% of the individual model runs) is equivalent to the anthropogenic climate forcing imposed over the past century, suggesting that observed changes in precipitation in these regions can provide guidance about the direction of future precipitation changes over the course of the next century.
Abstract
While most projections of climate change and its regional impacts focus on overall changes in the state of the climate system, useful information can also be found in the evolution of the climate system from one state to another. Here the authors introduce one method for identifying regions in which significant and systematic long-term nonlinear evolutions may be present, even given quasi-linear anthropogenic forcing. Using climate change projections taken from simulations of NCAR’s Community Climate System Model, version 3 (CCSM3), the authors then employ the technique to isolate systematic nonlinear behavior of soil moisture variations over the United States. While the projections presented here only represent the results from one model system, it is argued that such nonlinear behavior is an important characteristic of future climate change that should be considered when discussing both short-term and long-term impacts of anthropogenic climate forcing.
Abstract
While most projections of climate change and its regional impacts focus on overall changes in the state of the climate system, useful information can also be found in the evolution of the climate system from one state to another. Here the authors introduce one method for identifying regions in which significant and systematic long-term nonlinear evolutions may be present, even given quasi-linear anthropogenic forcing. Using climate change projections taken from simulations of NCAR’s Community Climate System Model, version 3 (CCSM3), the authors then employ the technique to isolate systematic nonlinear behavior of soil moisture variations over the United States. While the projections presented here only represent the results from one model system, it is argued that such nonlinear behavior is an important characteristic of future climate change that should be considered when discussing both short-term and long-term impacts of anthropogenic climate forcing.