Search Results

You are looking at 1 - 10 of 29 items for

  • Author or Editor: C. A. Jacobs x
  • Refine by Access: All Content x
Clear All Modify Search
C. A. Jacobs
and
P. S. Brown Jr.

Abstract

Full access
Jacob R. Reed
,
Susan A. Jasko
, and
Jason C. Senkbeil

Abstract

Weather icons are some of the most frequently used visual tools that meteorologists employ to communicate weather information. Previous research has shown a tendency for the public to make inferences about weather forecast information on the basis of the icon shown. For example, people may infer a higher likelihood of precipitation, assume a higher intensity of precipitation, or determine the duration of expected precipitation if the weather icon appears to show heavy rain. It is unknown to what extent these inferences align with what the meteorologist who chose the icon intended to convey. However, previous studies have used simulated weather icons rather than ones currently in use. The goal of our study was to explore how members of the public interpret actual weather icons they see on television or in mobile applications. An online survey distributed by broadcast meteorologists through social media was used to collect 6253 responses between August and September of 2020. Eleven weather icons currently used by broadcast meteorologists were included in the study. We also tested eight common weather phrases and asked people whether they thought the icons were good illustrators of those phrases. In addition, people were asked to assign a probability of precipitation to the icons. The findings of our study offer new and unique insights that will improve the communication of weather information by giving meteorologists information about how their audiences interpret weather icons.

Significance Statement

Millions of people are shown weather icons during daily weather broadcasts. This study used two approaches to determine whether these icons are effective elements of weather messaging. For the first approach, we showed people an icon alongside a common weather phrase and had them tell us whether the icon was a good illustrator of the weather phrase. The second approach involved showing people an icon and having them assign a probability of precipitation to it. Across eight weather phrases, none of the icons were thought to be good illustrators, but bad illustrators were clear. These results can be used to improve how icons are used as tools to communicate weather forecasts.

Full access
Jacob M. Steinberg
,
Noel A. Pelland
, and
Charles C. Eriksen

Abstract

A California Undercurrent eddy (Cuddy) was repeatedly surveyed using multiple Seagliders for over three months. Found and tracked off of the Washington–Vancouver Island coasts, this Cuddy traveled over 400 km, remaining between the 1000- and 2000-m isobaths, as it was swept along in poleward flow of the California Current System. Three Seagliders made repeat bisecting transects of the Cuddy core capturing its detailed three-dimensional structure in time. Its evolution was analyzed through comparison of 11 independent Cuddy “snapshots.” A two dimensional Gaussian model fit to the geopotential anomaly field for each snapshot allowed computation of dynamic fields inaccessible in Seaglider profiles alone. Results indicate that the Cuddy decayed as its core waters became less isolated over time: Cuddy total mechanical energy (kinetic + potential), salt content, and the magnitude of the core potential vorticity anomaly decreased. Core spice and dissolved oxygen variance increased tenfold, and thermohaline fine structure, suggestive of lateral intrusions, was observed progressively closer to the eddy core. The estimated gradient-wind balanced velocity field similarly weakened as the Rossby number decreased to 0.32 from an initial value of 0.48. The observed changes in eddy properties occurred as the Cuddy was exposed to changes in the background stratification and Coriolis parameter as it translated alongshore. Idealized modeling of eddy adjustment indicates that both erosion and changing background conditions are required to explain the observed eddy changes. Adjustment in response to both effects simultaneously leads to changes in eddy properties qualitatively consistent with those observed.

Full access
John M. Toole
,
Ruth C. Musgrave
,
Elizabeth C. Fine
,
Jacob M. Steinberg
, and
Richard A. Krishfield

Abstract

The vertical structure of subinertial variability is examined using full-depth horizontal velocity and vertical isopycnal displacement observations derived from the Ocean Observatory Initiative (OOI). Vertical profiles on time scales between 100 h and 1 yr or longer are characterized through empirical orthogonal function decomposition and qualitatively compared with theoretical modal predictions for the cases of flat, sloping, and rough bathymetry. OOI observations were obtained from mooring clusters at four deep-ocean sites: Argentine Basin, Southern Ocean, Station Papa, and Irminger Sea. Because no single OOI mooring in these arrays provides temperature, salinity, and horizontal velocity information over the full water column, sensor observations from two or more moorings are combined. Depths greater than ∼150–300 m were sampled by McLane moored profilers; in three of the four cases, two profilers were utilized on the moorings. Because of instrument failures on the deployments examined here, only ∼2 yr of full-ocean-depth observations are available from three of the four sites and some 3+ yr from the other. Results from the OOI “global” sites are contrasted with a parallel analysis of 3.5 yr of observations about the axis of the Gulf Stream where much of the subinertial variability is associated with stream meandering past the moorings. Looking across the observations, no universal vertical structure is found that characterizes the subinertial variability at the five sites examined; regional bathymetry, stratification, baroclinicity, nonlinearity, and the forcing (both local and remote) likely all play a role in shaping the vertical structure of the subinertial variability in individual ocean regions.

Restricted access
C. M. J. Jacobs
and
H. A. R. De Bruin

Abstract

Several authors have determined the sensitivity of transpiration to different environmental parameters using the Penman-Monteith equation. In their studies the interaction between transpiration and, for example, the humidity of the air is ignored: the feedback with the planetary boundary layer (PBL) is not accounted for. Furthermore, surface-layer (SL) feedback (e.g., stability effects in the surface layer) is often neglected.

In our study, both PBL feedback and SL feedback are accounted for by coupling the big-leaf model to a detailed model for the PBL. This study provides an analysis of the sensitivity of transpiration to net radiation calculated after an albedo change, aerodynamic resistance calculated after a change in the aerodynamic roughness, and surface resistance. It is shown that PBL feedback affects the sensitivity of transpiration to the tested variables significantly. The sensitivity of transpiration to surface resistance and to aerodynamic resistance, or aerodynamic roughness, is decreased by the PBL feedback. In contrast, PBL feedback enlarges the sensitivity of transpiration to the net radiation, or albedo, and appears to be highly dependent on the specific conditions, especially on the aerodynamic roughness of the vegetation. It is recommended that future sensitivity studies for prognostic use account for PBL feedback.

Full access
Noel A. Pelland
,
James S. Bennett
,
Jacob M. Steinberg
, and
Charles C. Eriksen

Abstract

Automated feature tracking and vehicle navigation have the potential to facilitate autonomous surveys of ocean eddies by increasing sampling quality and/or decreasing operator workload. During an observational campaign in late 2013 and early 2014, methods for automated tracking were used to direct multiple ocean gliders during persistent surveys of a California Undercurrent eddy in Washington and British Columbia, Canada, coastal waters over a 3-month period. Glider observations of depth-averaged currents in the ocean’s upper kilometer and vertical separation of selected isopycnals were assimilated into a simple model describing eddy position, size, strength, and background flows using an extended Kalman filter. Though differing in detail from observations, results show the assumed eddy structure was sufficient to describe its essential characteristics and stably estimate eddy position through time. Forecast eddy positions and currents were used to select targets automatically to guide multiple gliders along transects through the eddy center as it translated. Transects performed under automated navigation had comparable or better straightness and distance from the eddy center when compared to navigation based on manual interpretation of the eddy scale and position. The tracking results were relatively insensitive to model choices at times when the eddy was well sampled, but they were more sensitive during sampling gaps and redundancies or rapid eddy translation. Overall, the results provide evidence that automated tracking and navigation are feasible with potential for widespread application in autonomous eddy surveys.

Full access
Sebastian H. Mernild
,
Glen E. Liston
,
Christopher A. Hiemstra
,
Jacob C. Yde
, and
Gino Casassa

Abstract

We analyzed modeled river runoff variations west of the Andes Cordillera’s continental divide for 1979/80–2013/14 (35 years). Our foci were annual runoff conditions, runoff origins (rain, snowmelt, and glacier ice), and runoff spatiotemporal variability. Low and high runoff conditions were defined as occurrences that fall outside the 10th (low values) and 90th (high values) percentile values of the period of record. SnowModel and HydroFlow modeling tools were used at 4-km horizontal grid increments and 3-h time intervals. NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) datasets were used as atmospheric forcing. This modeling system includes evaporation and sublimation from snow-covered surfaces, but it does not take into account evapotranspiration from bare and vegetation-covered soils and from river and lake surfaces. In general for the Andes Cordillera, the simulated runoff decreased before 1997 and increased afterward. This could be due to a model precipitation artifact in the MERRA forcing. If so, this artifact would influence the number of years with low runoff values, which decreased over time, while the number of high runoff values increased over time. For latitudes south of ~40°S, both the greatest decrease in the number of low runoff values and the greatest increase in high runoff values occurred. High runoff values averaged 84% and 58% higher than low values for nonglacierized and glacierized catchments, respectively. Furthermore, for glacierized catchments, 61% and 62% of the runoff originated from rain-derived runoff during low and high runoff extreme years, respectively; 28% and 30% from snowmelt-derived runoff; and 11% and 8% from glacier-ice-melt-derived runoff. As the results could be MERRA dependent, more work with other precipitation forcings and/or in situ measurements is needed to assess whether these are real runoff behaviors or artifacts.

Open access
O. A. Tuinenburg
,
R. W. A. Hutjes
,
C. M. J. Jacobs
, and
P. Kabat

Abstract

Following the convective triggering potential (CTP)–humidity index (HIlow) framework by Findell and Eltahir, the sensitivity of atmospheric convection to soil moisture conditions is studied for India. Using the same slab model as Findell and Eltahir, atmospheric conditions in which the land surface state affects convective precipitation are determined. For India, CTP–HIlow thresholds for land surface–atmosphere feedbacks are shown to be slightly different than for the United States.

Using atmospheric sounding data from 1975 to 2009, the seasonal and spatial variations in feedback strength have been assessed. The patterns of feedback strengths thus obtained have been analyzed in relation to the monsoon timing. During the monsoon season, atmospheric conditions where soil moisture positively influences precipitation are present about 25% of the time. During onset and retreat of the monsoon, the south and east of India show more potential for feedbacks than the north. These feedbacks suggest that large-scale irrigation in the south and east may increase local precipitation.

To test this, precipitation data (from 1960 to 2004) for the period about three weeks just before the monsoon onset date have been studied. A positive trend in the precipitation just before the monsoon onset is found for irrigated stations. It is shown that for irrigated stations, the trend in the precipitation just before the monsoon onset is positive for the period 1960–2004. For nonirrigated stations, there is no such upward trend in this period. The precipitation trend for irrigated areas might be due to a positive trend in the extent of irrigated areas, with land–atmosphere feedbacks inducing increased precipitation.

Full access
A. C. Haza
,
E. D’Asaro
,
H. Chang
,
S. Chen
,
M. Curcic
,
C. Guigand
,
H. S. Huntley
,
G. Jacobs
,
G. Novelli
,
T. M. Özgökmen
,
A. C. Poje
,
E. Ryan
, and
A. Shcherbina

Abstract

The Lagrangian Submesoscale Experiment (LASER) was designed to study surface flows during winter conditions in the northern Gulf of Mexico. More than 1000 mostly biodegradable drifters were launched. The drifters consisted of a surface floater extending 5 cm below the surface, containing the satellite tracking system, and a drogue extending 60 cm below the surface, hanging beneath the floater on a flexible tether. On some floats, the drogue separated from the floater during storms. This paper describes methods to detect drogue loss based on two properties that distinguish drogued from undrogued drifters. First, undrogued drifters often flip over, pointing their satellite antenna downward and thus intermittently reducing the frequency of GPS fixes. Second, undrogued drifters respond to wind forcing more than drogued drifters. A multistage analysis is used: first, two properties are used to create a preliminary drifter classification; then, the motion of each unclassified drifter is compared to that of its classified neighbors in an iterative process for nearly all of the drifters. The algorithm classified drifters with a known drogue status with an accuracy of virtually 100%. Drogue loss times were estimated with a precision of less than 0.5 and 3 h for 60% and 85% of the drifters, respectively. An estimated 40% of the drifters lost their drogues in the first 7 weeks, with drogue loss coinciding with storm events, particularly those with steep waves. Once the drogued and undrogued drifters are classified, they can be used to quantify the differences in material dispersion at different depths.

Full access
Robert C. Jackson
,
Greg M. McFarquhar
,
Jeff Stith
,
Madeline Beals
,
Raymond A. Shaw
,
Jorgen Jensen
,
Jacob Fugal
, and
Alexei Korolev

Abstract

Prior estimates of ice crystal size distributions derived from 2D cloud probes (2DCs) have been artificially amplified by small ice crystals generated from the shattering of large ice crystals on the probe tips. Although antishatter tips and algorithms exist, there is considerable uncertainty in their effectiveness. This paper examines differences in ice crystal size distributions from adjacent 2DCs with standard and antishatter tips, and processed with and without antishattering algorithms. The measurements were obtained from the National Research Council of Canada Convair-580 during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the National Center for Atmospheric Research C-130 during the 2011 Instrumentation Development and Education in Airborne Science (IDEAS-2011). The 2DC size distributions are compared with those from the Holographic Detector for Clouds (HOLODEC), which has antishatter tips and allows for identification of shattering through spatial statistics.

The ratio of the number concentration N of particles with maximum dimensions 125–500 μm from the 2DC with standard tips to that from the 2DC with modified tips was correlated with median mass diameter and perimeter divided by area, but not with airspeed, attack, and attitude angles. Antishatter tips and algorithms reduced N by up to a factor of 10 for IDEAS-2011 and ISDAC, but neither alone removed all artifacts. For the period with coincident data, both N from the HOLODEC and 2DC with modified tips are around 5 × 10−3 L−1 μm−1, suggesting that antishatter tips and algorithms combined remove artifacts from the 2DC for the conditions sampled during IDEAS-2011.

Full access